

Government Arts and Science College

Ratlam (M.P.) 457001

Phone: 07412 - 235149

E-mail: hegaaspgcrat@mp.gov.in,pgcolrtm@hotmail.com

The syllabus designed by Central Board of Studies Bhopal and Vikram University, Ujjain has been adopted for the session 2018-19 at all the levels of UG and PG programme respectively.

Ratland (MP)

Session 2011-12 Schenie of Marks M.Sc. Chemistry SEMESTER-1

Paper	Paper Title	Code	Max.Marks
1	Inorganic Chemistry I	MCH-401	40+10 (CCE)=50
= 11	Organic Chemistry 1	MCI-!-402	40+10 (CCE)=50
11!	Physical Chemistry I	MCH-403	40+10 (CCE)=50
IV	Group Theory & Speciroscopy I	MCH-404	40+10 (CCE)=50
V	Mathematics for Chemistr or Biology for Chemists	MCH-405 (a) MCH-405 (b)	40+10 (CCE)=50 40+10 (CCE)=50
Practical	Inorganic MCH7F-1 Organic MCHPO-1 Physical McHPP-1	33 33 34	100
H 1	- present expression (5 di Soleman	Grand Total	The second secon

Mar Sur se-alvie

SEMESTER I

Paper-I MCH-401: INORGANIC CHEMISTRY I

Unit-I

Stereochemistry and Bonding in Main Group Compounds:

VSEPR. Walsh diagram (triatomic and penta-atomic molecules), $d\pi$ -p π bond. Bent rule and energetics of hybridization, some simple reactions of covalently bonded molecules.

Unit-II

Metal-Ligand Equilibrium in Solution

Stepwise and overall formation constants and their interaction, trends in stepwise constant, factors affecting the stability of metal complexes with reference to the nature of metal ion and ligand. Chelate effect and its thermodynamic origin, determination of binary formation constants by potentiometry and spectrophotometry.

Unit-III

Reaction Mechanism of Transition Metal Complexes

Energy profile of a reaction, reactivity of metal complex, inert and labile complexes-kinetic application of valence bond and crystal field theories, kinetics of octahedral substitution, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, direct and indirect evidences in favour of conjugate mechanism, anion reactions, reactions without metal ligand bond cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the substitution reaction. Redox reaction, electron transfer reactions, mechanism of one electron transfer reactions, outer sphere type reactions, cross reactions and Marcus-Hush theory, inner sphere type reactions.

Unit-IV

Metal-Ligand bonding

Limitation of crystal field theory, molecular orbital theory for bonding in octahedral, tetrahedral and square planar complexes, π -bonding and molecular orbital theory.

Unit-V

HSAB Theory: Classification of acids and bases as hard and soft: HSAB principle, theoretical basis of hardness and softness; Lewis-acid base reactivity approximation; donor and acceptor numbers, E and C equation; applications of HSAB concept.

Books Suggested:

- 1. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley,
- 2. Inorganic Chemistry, J.E. Huhey, Harpes & Ross.
- 3. Chemistry of the Ellements, N.N. Greenwood and A. Earnshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier.
- 5. Magnetiochemistry, R.I. Cartin, Springer Verlag.
- Comprehensive Coordiantion Chemistry eds., G. Wilkinson, R.D. Gillars and J.A. Mc Cleverty, Pergamon.

or Sul sould

Paper-II MCH-402: ORGANIC CHEMISTRY I

Unit-I

Nature of Booding in Organic Molecules

Delocalized chemical bonding-conjugation, cross conjugation, resonance hyperconjugation, bonding in fullerences, tautomerism. Aromaticity in benzenoid and non-benzoid compounds, alternate and non-alternate hydrocarbons. Huckel's rule, energy. Level of π -molecular orbitals, annulenes, anti-aromaticity, homo-aromaticity, PMO approach. Bonds weaker than covalent-addition compounds, crown ether complexs and cryptands. inclusion compounds. catenanes and rotaxanes.

Unit-II

Stereochemistry

Strain due to unavoidable crowding Elements of symmetry, chirality, molecules with more than one chiral center, threo and entythro isomers, methods of resolution, optical purity, enantiotopic and diastereotopic atoms, groups and faces, stereospecific and stereoselective synthesis, Asymmetric synthesis. Optical activity in the absence of chiral carbon (biphenyls, allenes and spirane chirallity due to helical shape. Stereochemistry of the compounds containing nitrogen, sulphur and phosphorus.

Unit III

Conformational analysis and linear free energy relationship

Conformational analysis of cycloalkanes, decalines, effect of conformation on reactivity, conformation of sugars.

Generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes and nitrenes. The Hammett equation and linear free energy relationship, substituents and reaction constants, Taft equation.

Unit-IV

Reaction Mechanism: Structure and Reactivity

Type of mechanisms, types of reactions, thermodynamic and kinetic requirements, kinetic and thermodynamic control. Hammond's postulate. Curtir-Hammett principle. Potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotopes effects

Unit-V

Aliphatic Nucleophilic Substitution

The SN2. SN1 mixed SN1 and SN2 and SET mechanism. The neighboring group mechanism, neighboring group participation by p and s bonds, anchimeric assistance.

Nhow &M & ali

Classical and nonclassical carbocations, phenomium ions, norborynl systems, common carbocation rearrangements. Application of NMR spectroscopy in the detection of carbocations. The SN1 mechanism. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis and ultrasound, ambident nucleophile, regioselectivity.

Book Suggested

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum.
- 3. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 4. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Comell University Press.
- 5. Organic Chemistry, R.T. Morrison and R.N. Boyd, Prentice-Hall.
- 6. Modern Organic Reactions, H.O. House, Benjamin.
- 7. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professionsl.
- 8. Reaction Mechanism in Organic Chemistry, S.M. Mukherji and S.P. Singh, Macmillan.
- 9. Pericyclic Reactions, S.M. Mukherji, Macmillan, India
- 10. Stereochemistry of Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemisty of Organic Compounds, P.S. Kalsi, New Age International.

Paper-III MCH-403: PHYSICAL CHEMISTRY I

Unit-I

Introduction to Exact Quantum Mechanical Results

Schrödinger equation and the postulates of quantum mechanics. Discussion of solutions of the Schrödinger equation to some model systems viz., particle in a box, the harmonic oscillator, the rigid rotor, the hydrogen atom and helium atom.

Unit-II

Approximate Methods

The variation theorem, linear variation principle. Perturbation theory (First order and nondegenerate). Applications of variation method and perturbation theory to the Helium atom.

Molecular Orbital Theory

Huckel theory of conjugated systems bond and charge density calculations. Applications to ethylene, butadiene, cyclopropenyl radical cyclobutadiene etc. Introduction to extended Huckel theory.

& Olm

Sm

UNIT III

Angular Momentum

Ordinary angular momentum, generalized angular momentum, eigenfucntions for angular momentum, eigenvalues of angular momentum operator using ladder operators addition of angular momenta, spin, antisymmetry and Pauli exclusion principle.

Unit-IV

Classical Thermodynamics

Brief resume of concepts of laws of thermodynamics, free energy, chemical potential and entropies. Partial molar free energy, partial molar volume and partial molar heat content and their significance. Determinations of these quantities. Concept of fugacity and determination of fugacity. Non-ideal systems: Excess functions for non-ideal solutions. Activity, activity coefficient, Debye Huckel theory for activity coefficient fo electrolytic solutions; determination of activity and activity coefficients; ionic strength. Application of phase rule to three component systems; second order phase transitions.

Unit-V

Statistical Thermodynamics

Concept of distribution, thermodynamic probability and most probable distribution. Ensemble averaging, postulates of ensemble averaging. Canonical, grand canonical and micro-canonical ensembles, corresponding distribution laws (using Lagrange's method of undetermined multipliers). Partition functions-translation, rotational, vibrational and electronic partition functions. Calculation of thermodynamic properties in terms of partition. Application of partition functions. Fermi-Dirac Statistics, distribution law and applications to metal. Bose-Einstein statistics distribution Law and application to helium.

Books Suggested

- 1. Physical Chemistry, P.W. Atkins, ELBS.
- 2. Introduction to Quantum Chemistery, A.K. Chandra, Tata Mc Graw Hill.
- 3. Quantum Chemistry, Ira N. Levine, Prentice Hall.
- 4. Coulson's Valence, R.Mc Ween y. ELBS.
- 5 Chemical Kinetics. K.J. Laidler, McGraw-Hill.
- 6. Kinetics and Mechanism of Chemical Transformation J.Rajaraman and J. Kuriacose, Mc Millan.
- 7. Micelles, Theoretical and Applied Aspects, V. MOraoi. Plenum.
- 8. Modern Electrochemistry Vol. ! and Vol II J.O.M. Bockris and A.K.N. Reddy, Planum.
- 9. Introduction to Polymer Science, V.R. Gowarikar, N.V. Vishwanathan and J. Sridhar, Wiley Eastern.
- 10. Introduction to Quantum Chemistry-R.K. Prasad, New Age Publication.

An Selin

Paper-IV MCH-404: Group Theory & Spectroscopy I

Unit-I

Symmetry and Group theory in Chemistry

Symmetry elements and symmetry operation, definition of group, subgroup. Conjugacy relation and classes. Point symmetry group. Schonfillies symbols, representations of groups by matrices (representation for the C_0 , C_{nv} , C_{nh} , D_{nh} group to be worked out explicity). Character of a representation. The great orthogonality theorem (without proof) and its importance. Character tables and their use; spectroscopy. Derivation of character table for C_{2v} and C_{3v} point group Symmetry aspects of molecular vibrations of H_2O molecule.

Unit-II

Microwave Spectroscopy

Classification of molecules, rigid rotor model, effect of isotopic substitution on the transition frequencies, intensities, non-rigid rotor. Stark effect, nuclear and electron spin interaction and effect of external field, applications.

Unit-III

Infrared-Spectroscopy

Review of linear harmonic oscillator, vibrational energies of diatomic molecules, zero point energy, force constant and bond strengths; anharmonicity. Morse potential energy diagram, vibration-rotation spectroscopy, P.Q.R. branches, Breakdown of Oppenheimer approximation; vibrations of polyatomic molecules. Selection rules, normal modes of vibration, group frequencies, overtones, hot bands, factors affecting the band positions and intensities, far IR region, metal ligand vibrations, normal co-ordinate analysis.

Unit-IV

Raman Spectroscopy

Classical and quantum theories of Raman effect. Pure rotational, vibrational and vibrational rotational Raman spectra, selection rules, mutual exclusion principle, Resonance Raman spectroscopy, coherent anti stokes Raman spectroscopy (CARS).

Unit-V

Electronic Spectroscopy Molecular Spectroscopy

Energy levels, molecular orbitals, vibronic transitions, vibrational progressions and geometry of the excited states, Franck-Condon principle, electronic spectra of polyatomic molecules. Emission spectra; radio-active and non-radioactive decay, internal conversion, spectra of transition metal complexes, charge-transfer spectra

Photoelectron Spectroscopy

Basic principles; photo-electric effect, ionization process. Koopman's theorem.

Din 28. Juli

Photoelectron spectra of simple molecules, ESCA, chemical information from ESCA. Auger electron spectroscopy-basic idea.

Books suggested

- 1. Modern Spectroscopy, J.M. Hollas, John Viley.
- 2. Applied Electron Spectroscopy for chemical analysis d. H. Windawi and F.L. Ho, Wiley Interscience.
- 3. NMR, NQR, EPr and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Harwood.
- 4. Physical Methods in Chemistry, R.S. Drago, Saunders College.
- 5. Chemical Applications of Group Theory, F.A. Cotton.
- 6. Introduction to Molecular Spectroscopy, G.M. Barrow. Mc Graw Hill.
- 7. Basic Principles of Spectroscopy, R. Chang. Mc Graw Hill.
- 8. Theory and Application of UV Spectroscopy, H.H. Jaffe and M. Orchin, IBH-Oxford.
- 9. Introduction to Photoelectron Spectroscopy, P.K. Ghosh, John Wiley.
- 10. Introduction to Magnetic Resonance, A Carrington and A.D. Maclachalan, Harper & Row.

Paper-V MCH-405 (a): MATHEMATICS FOR CHEMISTS

(For students without Mathematics in B.Sc.)

Unit-I

Vectors

Vectors, dot, cross and triple products etc. gradient, divergence and curl. Vector Calculus. Matrix Algebra

Addition and multiplication, inverse, adjoint and transpose of matrices.

Unit-II

Differential Calculus

Functions, continuity and differentiability, rules for differentiation, applications of differential calculus including maxima and minima (examples related to maximally populated rotational energy levels. Bohr's radius and most probable velocity from Maxwell's distribution etc.).

Unit-III

Integral calculus

Basic rules for integration, integration by parts, partial fractions and substitution. Reduction formulae, applications of integral calculus.

Functions of several variables, partial differentiation, co-ordinate transformations (e.g.

Cartesian to spherical polar)

Sul salin

Unit-1V

Elementary Differential equations

First-order and first degree differential equations, homogenous, exact and linear equations. Applications to chemical kinetics, secular equilibria, quantum chemistry etc. resecond order differential equation and their solutions.

Unit-V

Permutation and Probability

Permutations and combinations, probability and probability theorems average, variance root means square deviation examples from the kinetic theory of gases etc.. fitting (including least squares fit etc with a general polynomial fit.

Book Suggested

- 1. The chemistry Mathematics Book, E.Steiner, Oxford University Press.
- 2. Mathematics for chemistry, Doggett and Suiclific, Logman.
- 3 Mathematical for Physical chemistry: F. Daniels. Mc. Graw Hill.
- 4. Chemical Mathematics D.M. Hirst, Longman.
- 5. Applied Mathematics for Physical Chemistry, J.R. Barante, Prentice Hall.
- 6. Basic Mathematics for Chemists, Tebbutt, Wiley.

Paper-V CH-405 (b) BIOLOGY FOR CHEMISTS

(For students without Biology in B.Sc.)

Unit-l

Cell Structure and Functions

Structure prokaryotic and eukaryotic cells, intracellular organelles and their functions, comparison of plant and animal cells. Ove4rview and their functions, comparison of plant and animal cells. Overview of metabolic processes-catabolism and anabolism. A IP - the biological energy currency. Origin of life-unique properties of carbon chemical evolution and rise of living systems. Introduction to bio-molecules, building blocks of bio-macromolecules.

Unit-II

Carbohydrates

Conformation of monosaccharides, structure and functions of important derivatives of mono-saccharides like glycosides, deoxy sugars, myoinositol, amino sugars. Nacetylmuramic acid, sialic acid disaccharides and polysaccharides. Structural polysaccharides cellulose and chitin. Storage polysaccharides-starch and glycogen. Structure and biological function of glucosaminoglycans of mucopolysaccharides. Carbohydrates of glycoporteins and glycolipids. Role of sugars in biological recognition. Blood group substances. Ascorbic acid.

Sin Seglin

Unit-III

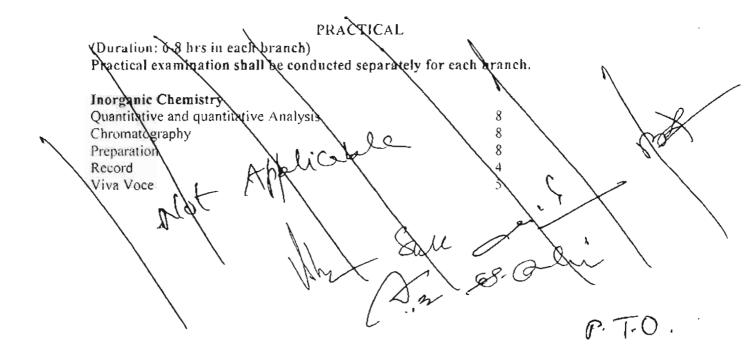
Lipíd

Fatty acids, essential fatty acids, structure and function of triacylglycerols, glycerophospholipids, sphingolipids, cholesterol, bile acids, prostaglandins. Liproproteins-composition and function, role in atherosclerosis. Properties of lipid aggregates-micelles, bilayers, liposomes and their possible biological functions. Biological membranes. Fluid mosaic model of membrane structure. Lipid metabolism-boxidation of fatty acids.

Unit-IV

Amino-acids, Peptides and Proteins

Chemical and enzymatic hydrolysis of proteins to peptides, amino acid sequencing. Secondary structure of proteins, force responsible for holding of secondary structures, ahelix, -b-sheets, super secondary structure, triple helix structure of collagen. Tertiary structure of protein-folding and domina structure. Quaternary structure. Amino acid metabolism-degradation and biosynthesis of amino acids, sequence determination: chemical/enzymatic/mass spectral, racemization/detection. Chemistry of oxytocin and tryptophan releasing hormone (TRH).


Unit-V

Nucleic Acids

Purine and pyrimidine bases of nucleic acids, base pairing via Hbounding. Structure of ribonucleic acids (RNA) and deoxyribonucleic acid (DNA), double helix model of DNA and forces responsible for holding it. Chemical and enzymatic hydrolysis of nucleic acids. The chemical basis for heredity, an overview of replication of DNA, transcription, translation and genetic code. Chemical synthesis of mono and trinucleoside.

Book Suggested

- 1. Principles of Biochemistry, A.L. Lehninger, Worth Publishers.
- 2. Biochemistry, L. Stryer, W.H. Freeman.
- 3. Biochemistry, J. David Rawan, Neil Patterson.
- 4. Biochemistry, Voet and Voet, John Wiley.
- 5. Outlines of Biochemistry E.E. Conn and P.K. Stumpf, John Wiley.

M. Sc. Poarticals

PRACTICAL

(Duration: 6-8 hrs in each branch)

Practical examination shall be conducted separately for each branch.

Inorganic Chemistry

SEMESTER I

Quantitative and quantitative Analysis	12
Preparation	12
* * . ;	4
Viva Voce	5

Qualitative and Quantitative Analysis

- a. Quantitative determinations of a three component mixture
- b. Insoluble- Oxides, sulphates and halides
- Elless common metal ions. Ti. Mo, W, Ti, Zr, Th, V, U (two metal ions in cationic/anionic forms).
- d. Quantitative separation and determination of the following pairs of metal ions using gravimetric and volumetric methods:
 - 1. Cu²⁺ (gravimetrically) and Zn²⁺ (volumetrically),
 - 2. Fe3* (gravimetrically) and Ca2* (volumetrically)
 - 3 Com (gravimetrically) and Ni²¹ (volumetrically)
 - 4. Ni²⁺ (gravimetrically) and Zn²⁺ (volumetrically)
 - 5. Cu²⁺ (gravimetrically) and Fe³⁺ (volumetrically)

Preparations

Preparation of selected inorganic compounds and their studies by LR electronic spectra, Mossbauer,

ESP, and magnetic susceptibility measurements. Handling of air and moisture sensitive compounds

- 1. trans-potassium diaquabis(oxalato)chromate(III), trans- $K[Cr(ox)_2(H_2O)_2]$
- 2 cis-potassium diaquabis(oxalato)chromate(III), cis-K[Cr(ox)₂(H₂O)₂]
- 3. Na[Cr(NH₂)₂/SCN)₄]
- 4 Nilacacl
- 5 K. [Fe(C.O.):1
- 6. Prussian Blue, Turnbuli's Blue.
- 7 Potassium tri-oxalato aluminate

ORGANIC CHEMISTRY

SEMESTER I

Organic Chemistry

Qualitative Analysis 16

Organic Synthesis 08

Record 4

Viva Voce 5

for plazes

22 00 T. 13 22 07/13

Qualitative Analysis

Separation, purification and identification of compounds of ternary mixture (two solid and one liquid)

Organic Preparation

Acetylation Acetylation of salicylic acid and acetanilide

Oxidation Adipic acid by chromic acid oxidation of cyclothexaneol

Grignard reaction. Synthesis of triphenylmethanol from benzoic acid

The Products may be Characterized by Spectral Techniques.

SEMESTER!

Physical Chemistry

Error Analysis and Statistical Data Analysis	8
Chemical Kinetics	9
Solution	8
Record	4
Viva Voce	5

Error Analysis and Statistical Data Analysis

1. Errors, types of errors, minimization of errors distribution curves precision, accuracy and combination; statistical treatment for error analysis, t test, null hypothesis, rejection criteria. F & Q test; linear regression analysis, curve fitting.

the remain of volumetric apparatus, burette, pipette and standard flask

- 3 Preparation of standard solutions (solid and liquid compounds) and their standardization
- 4. Equalization of strength of two acids by titrimetrically

Chemical Kinetics

Determination of the effect of (a) Change of temperature (activation parameters) (b) Change of concentration of reactant and catalyst and (c) lonic strength of the media on the velocity constant of

- 1. Acid catalyzed hydrolysis of an ester
- 2. Sodium-formate-l₂ reaction

51.3611071

- 1. Determination of congruent composition and temperature of a binary system (e.g. diphenylamine-benzophenone system).
- 2. Determination of molecular weight of camphor by Rast method

Books Suggested

- Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R.C. Denney, G.H. Jeffery and J. Mendham, ELBS.
- 2 Synthesis and Characterization of Inorganic Compounds, W.L. Jolly. Prentice Hall.

60x 1 22/07

12.07.13

2 2 0 11 13

- 3. Experiments and Techniques in Organic Chemistry, D.P. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 4 Macroscale and Microscale Organic Experiments, K.L. Williamson, D.C. Health.
- 5 Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 6. Handbook of Organic Analysis-qualitative and Quantitative. H. Clark, Adward Arnold.
- 7. Voget's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 8. Practical Physical Chemistry, A.M. James and F.E. Prichard, Longman.
 - 9 Findley's Practical Physical chemistry, B.P. Levitt, Longman.
 - 10. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
 - 11. Inorganic Experimens, J. Derek Woolings, VCH.
 - 12. Microscale Inorganic Chemistry, Z. Szafran, R.M. Pike and M.M. Singh, Wiley.
 - 13. Practical Inorganic Chemistry, G. Marr and B. W. Rockett, Van Nostrad.

14 The systematic Identification of Organic Compounds, R.L. Shriner and D.Y. curlin.

Mrs 2161

Son of

2207/13

Session 2011-12 Scheme of Marks M.Sc. Chemistry SEMESTER-II

Paper	Paper Title	Code	Max.Marks
ſ	Inorganic Chemistry II	MCH-406	40+10 (CCE)=50
11	Organic Chemistry II	MCH-407	40+10 (CCE)=50
10	Physical Chemistry 11	MCH-408	40+10 (CCE)=50
IV	Spectroscopy !!	MCH-409	40+10 (CCE)=50
ν	Computers for Chemists	MCH-410	: 40±10 (CCE)=-50
Practical	Inorganic Organic Physical	32 ₄ 33 32 33 33 34	100
		Grand Total	350

1/2

Sull

Je 18

6.8.11

S. Glu

SEMESTER II

Paper-VI MCH-406: INORGANIC CHEMISTRY II

Unit-I

Electronic Spectral Studies of Transition Metal Complexes:

Spectroscopic ground states, correlation. Orgel and Tanabe-Sugano diagrams for transition metal complexes (d^1 - d^9 states), Selection rule for electronic spectroscopy. Intensity of various type electronic transitions. Calculations of 10Dq, B and β parameters, charge transfer spectra.

Unit-II

Magnetic Properties of Transition Metal Complexes

Anomalous magnetic moments, Quenching of Orbital contribution. Orbital contribution to magnetic moment, magnetic exchange coupling and spin crossover.

Unit-III

Metal π-Complexes

Metal carbonyl, structure and bonding, vibrational spectra of metal carbonyls for bonding and structural elucidation, important reactions of metal carbonyls; preparation, bonding structure and important reaction of transition metal nitrosyl, dinitrogen and dioxgen complexes; tertiary phosphine as ligand.

Unit-IV

Metal Clusters

Higher boranes, carboranes, metalloboranes and metallo-carboranes compounds with metal multiple bonds.

Unit-V

Optical Rotatory Dispersion and Circular Dichroism

Linearly and circularly polarized lights; optical rotatory power and circular birefringence, elipticity and circular dichroism: ORD and Cotton effect, Faraday and Kerr effects: Assignment of electronic transitions: applications of ORD and CD for the determination of (i) absolute configuration of complexes and (ii) isomerism due to non-planarity of chelate rings.

Books Suggested:

- 7. Advanced Inorganic Chemistry, F.A. Cotton and Wilkinson, John Wiley.
- 8. Inorganic Chemistry, J.E. Huhey, Harpes & Row.
- 9. Chemistry of the Elements. N.N. Greenwood and A. Earnshow, Pergamon.
- 10. Inorganic Electronic Spectroscopy, A.B.P. Lever, Elsevier.
- 11. Magnetiochemistry, R.1. Carlin, Springer Verlag.
- 12. Comprehensive Coordination Chemistry eds., G. Wilkinson, R.D. Gillars and J.A. Mc Cleverty, Pergamon.

8.00 0 618 8-olul

Paper-VII MCH-407: ORGANIC CHEMISTRY II

Unit-f

Aromatic Electrophilic Substitution

The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ipso attack, orientation in other ring systems. Quantitative treatment of reactivity in substrates and electrophiles. Diazonium coupling, Vilsmeir reaction, Gatterman-Koch reaction

Aromatic Nucleophilei Substitution

The SNAr SN1, benzyne and SN1 mechanism, Reactivity effect of substrate structure, leaving group and attacking nucleophile. The Von Richte. Sommelet-Hauser, and Smiles rearrangements.

Unit-II

Free Radical Reactions

types of free radical reactions, free radical substitution mechanism, mechanism at an aromatic substrate, neighbouring group assistance. Reactivity for aliphatic and aromatic substrates at a bridgehead. Reactivity in the attacking radicals. The effect of solvents on reactivity. Allylic halogenation (NBS), oxidation of aldehydes to carboyxlic acids, auto-oxidation, coupling of alkynes and arylation of aromatic compounds by diazonium salts. Sandmeyer reaction. Free radical rearrangement. Hunsdiecker reaction.

Unit III

Addition Reactions

Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals, regio-and chemoselectivity, orientation and reactivity. Addition to cyclopropane ring. Hydrogenation of double and triple bounds, hydrogenation of aromatic rings. Hydroboration. Michael reaction, sharpless asymmetric epoxidation.

Unit-IV

Addition to Carbon-Hetero Multiple bonds

Mechanism of nictal hydride reduction of saturated and unsaturated carbonyl compounds, acid esters and nitriles. Addition of Grignard reagents, organozine and organolithium reagents to carbonyl and usaturated carbonyl compounds. Witting reaction. Mechanism of condensation reactions involving enolates-Aldol. Knoevenagel, Claisen. Mannich. Benzoin. Perkin and Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.

Elimination Reactions

The E2. E1 and E1 cB mechanisms and their spectrum. Orientation of the double bond. Reactitivty-effects of substrate structures, attacking base, the leaving group and the medium. Mechanism and orientation in pyrolytic elimination.

Cal May

10 618 8. alin Din

Unit-V

Pericyelic Reactions

Molecular orbital symmetry, Frontier orbitals of ethylene. 1.3-butadiene. 1.3.5-hexatriene and allyl system. Classification of periycyclic reactions. Woodward-Hoffmann correlatino diagrams. FMO and PMO approach. Electrocyclic reactions-conrotatory and disrotatory motions. 4n 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems. 2+2 addition of ketenes, 1.3 dipolar cycloadditions and cheleotrpic reactions. Sigmatropic rearrangements-suprafacial and antarafacial shifts of H, sigmatropic involving carbon moieties. 3,3- and 5.5 sigmatropic rearrangements. Claise n, Cope and aza-Cope rearrangements. Fluxional tautomerism. Ene reaction.

Book Suggested

- 12. Advanced Organic Chemistry-Reactions, Mechanism and Structure. Jerry March, John Wiley.
- 13. Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum.
- 14. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes. Longman.
- 15. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Comell University Press.
- 16. Organic Chemistry, R.T. Morrison and R.N. Boyd, Prentice-Hall.
- 17. Modern Organic Reactions, H.O. House. Benjamin.
- 18. Principles of Organic Synthesis. R.O.C. Norman and J.M. Coxon, Blackie Academic &* Professions!
- 19 Reaction Mechanism in Organic Chemistry, S.M. Mukherji and S.P. Singh. Macmillan
- 20. Pericyclic Reactions, S.M. Mukherji, Macmillan, India
- 21. Stereochemistry of Organic Compounds, D.Nasipuri, New Age International
- 22. Stereochemisty of Organic Compounds, P.S. Kalsi, New Age International.

Paper-VIII MCH-408: PHYSICAL CHEMISTRY II

Unit-L

Chemical Dynamics

Methods of determining rate laws, collision theory of reaction rates, steric factor, activated complex theory, Arrhenius equation and the activated complex theory; ionic reactions, kinetic salt effects, steady state kinetics, kinetic and thermodynamic control of reactions, treatment of unimolecular reactions. Dyamic chain (hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane), photochemical (hydrogen-bromine and hydrogen-chlorine reactions) and homogenous catalysis, kinetics of enzyme reactions, general features to fast reactions, study of fast reactions by flow method, relaxation method, flash photolysis ad the nuclear magnetic resonance method, dynamics

- Ma Sul

alvi Su

of unimolecular reactiosn (Lindemann Hinshelwood and Rice-Ramsperger-Kassel-Marcus (RRKM) theories for unimolecular reactions).

Unit-II

Surface Chemistry

Adsorption

Surface tension, capillary action, pressure difference across curved surface (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, estimation of surface area (BET equation), Surface films on liquids (Electro-kinetic phenomenon).

Micelles

Surface active agents, classification of surface active agents, micellization, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, counter ion binding to micelles, thermodynamics of micellization-phase separation and mass action models, solublization, micro emulsion, reverse micelles.

Unit-III

Macromolecules

Polymer-definition, types of polymers, electrically conducting, fire resistant, liquid crystal polymers, kinetics of polymerization, mechanism of polymerization. Molecular mass, number and mass average molecular mass, molecular mass determination (Osmometry, viscometry, diffusion and light scattering methods), sedimentation, chain configuration of macromolecules, calculation of average dimension of various chain structures.

Unit-IV

Non Equilibrium Theromodynamics

Thermodynamic criteria for non-equilibrium states, entropy production and entropy flow, entropy balance equations for different irreversible processes (e.g., heat flow, chemical reaction etc.) transformations of the generalized fluxes and forces, non equilibrium stationary states, phenomenological equations, microscopic reversibility and Onsager's reciprocity relations, electrokinetic phenomena, diffusion, electric conduction.

Unit-V

Electrochemistry

Electrochemistry of solutions. Debye-Huckel-Onsager treatment and its extension, ion solvent interactions. Debye-Huckel-Jerum mode. Thermodynamics of electrified interface equations. Derivation of electro capillarity, Lippmann equations (surface excess), methods of determination, Structure of electrified interfaces.

Overpotentials, exchange current density, derivation of Butler Volmer equation. Tafel plot. Quantum aspects of charge transfer at electrodes-solution interfaces, quantization of charge transfer, tunneling. Semiconductor interfaces-theory of double layer at

Sauce

& aligh, no

semiconductor, electrolyte solution interfaces, structure of double layer interfaces. Effect of light at semiconductor solution interface. Polarography theory. Ilkovic equation: half wave potential and its significance.

Books Suggested

- 11. Physical Chemistry, P.W. Atkins, ELBS.
- 12. Introduction to Quantum Chemistry, A.K. Chandra, Tata Mc Graw Hill.
- 13. Quantum Chemistry, Ira N. Levine, Prentice Hall.
- 14. Coulson's Valence, R.Mc Ween v, ELBS.
- 15. Chemical Kinetics. K.J. Laidler, McGraw-Hill.
- 16. Kineties and Mechanism of Chemical Transformation J.Rajaraman and J. Kuriacose, Mc Millan.
- 17. Micelles, Theoretical and Applied Aspects, V. MOraoi, Plenum.
- 18. Modern Electrochemistry Vol. 1 and Vol II J.O.M. Bockris and A.K.N. Reddy, Planum.
- 19. Introduction to Polymer Science, V.R. Gowarikar, N.V. Vishwanathan and J. Sridhar, Wiley Eastern.

Paper-IX MCH-409: Spectroscopy II and Diffraction Methods

Hnit-1

Nuclear Magnetic Resonance Spectroscopy

Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its measurements, factors, influencing chemical shift, deshielding, spin-spin interactions, factors influencing coupling constant "j" Classification (AXB, AMX, ABC, A2B2 etc.), spin decoupling; basic ideas about instrument, NMR studies of nuclei other than protin-13C, 19F and 31P. FT NMR, advantages of FT NMR.

Unit II

Nuclear Quadrupole Resonance Spectroscopy

Quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant, splitting. Applications.

Unit-III

Electron Spin Resonance Spectroscopy

Basic principles, zero field splitting and Kramer's degeneracy, factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, spin Hamiltonian, spin densities and Mc Connell relationship, measurement techniques, applications.

Unit-IV

She She

oli

X-ray Diffraction

Bragg condition, Miller indices, Laue Method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals, index reflections, identification of unit cells from systematic absences in diffraction pattern, Structure of simple lattices and X-ray intensities, structure factor and its relation to intensity and electron density, phase problem. Description of the procedure for an X-ray structure analysis, absolute configuration of molecules.

Unit-V

Electron Diffraction

Scattering intensity vs. scattering angle, Wierl equation, measurement technique, elucidation of structure of simple gas phase molecules. Low energy electron diffraction and structure of surfaces.

Neutron Diffraction Scattering of neutrons by solids measurement techniques, Elucidation of structure of magnetically ordered unit cells.

Books suggested

- 11. Modern Spectroscopy, J.M. Hollas, John Viley.
- 12. Applied Electron Spectroscopy for chemical analysis d. H. Windawi and F.L. Ho, Wiley Interscience.
- 13. NMR, NQR, EPr and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Harwood.
- 14. Physical Methods in Chemistry, R.S. Drago. Saunders College.
- 15. Chemical Applications of Group Theory, F.A. Cotton.
- 16. Introduction to Molecular Spectroscopy, G.M. Barrow, Mc Graw Hill.
- 17. Basic Principles of Spectroscopy, R. Chang, Mc Graw Hill,
- 18. Theory and Application of UV Spectroscopy, H.H. Jaffe and M. Orchin, IBII-Oxford.
- 19. Introduction to Photoelectron Spectroscopy, P.K. Ghosh, John Wiley.
- 20. Introduction to Magnetic Resonance, A Carrington and A.D. Maclachalan, harper & Row.

Paper-X Ch-410: COMPUTERS FOR CHEMISTS

This is a theory cum-laboratory co use with more emphasis on laboratory work.

Unit-I

Introduction to computers and Computing

Basic structure and functioning of computer with a PC as illustrative example. Memory I/O devices. Secondary storage Computer languages. Operating systems with DOS as an example Introduction to UNIX and WINDOWS. Principles of programming Alogrithms and flow-charts.

Unit-II

Sur 98. ali

Computer Programming in FORTRAN/C/BASIC

(the language features are listed here with reference to FORTRAN. The instructor may choose another language such as BASIC or C the features may be replaced appropriately). Elements of the compute language. Constants and variables. Operations and symbols Expressions. Arithmetic assignment statement. Input and output Format statement. Termination statements. Branching statements as IF or GO TO statement. LOGICAL variables. Double precession variables. Subscripted variables and DIMENSION. DO statement FUNCTION AND SUBROUTINE. COMMON and DATA statement (Student learn the programming logic and these language feature by hands on experience on a personal computer from the beginning of this topic.)

Unit-III

Programming in Chemistry

Developing of small computer codes using any one of the languages FORTRAN/C/BASIC involving simple formulae in Chemistry, such as Van der Waals equation. Chemical kinetics (determination of Rate constant) Radioactive decay (Half Life and Average Life). Determination Normality, Molarity and Molality of solutions. Evaluation Electronegativity of atom and Lattice Energy from experimental determination of molecular weight and percentage of element organic compounds using data from experimental metal representation of molecules in terms of elementary structural features such as bond lengths, bond angles.

Unit-IV

Use of Computer programmes

Operation of PC. Data Processing. Running of standard Programs and Packages such as MS WORD, MS EXCEL -special emphasis on calculations and chart formations. X-Y plot. Simpson's Numerical Integration method. Programmes with data preferably from physical chemistry laboratory.

Unit V

Internet

Application of Internet for Chemistry with search engines, various types of files like PDF, JPG, RTF and Bitmap, Scanning, OMR, Web camera

Book Suggested:

Fundamentals of Computer: V. Rajaraman (Prentice Hall) Computers in Chemistry: K.V. Raman (Tata Mc Graw Hill)

Computer Programming in FORTRAN IV-V Rajaraman (Prentice Hall)

Sul Jes. ali

SENICS IEK II

Inorganic Chemistry

Chromatography	12
Preparation	12
Chromatography	8
Record	4
Viva Voce	5

Chromatography Separation of cations and anions by Column Chromatography: Ion exchange.

- a To determine the ion exchange capacity of cation exchangers
- To determine the ion exchange capacity of anion exchangers.
- c. ion exchange chromatography, Separation & estimation of (Zn^{+2}/Cd^{+2}) & (Zn^{+2}/Mg^{+2}) in mixtures using Amberlite IRA 400 anion exchanger
- d. To determine the total cation concentration of given sample of water by ion exchange in ppm.

Preparations

Preparation of selected inorganic compounds and their studies by I.R. electronic spectra, Mossbauer, E.S.R. and magnetic susceptibility measurements. Handling of air and moisture sensitive compounds.

- 1. $[Co(NH_3)_6][Co(NO_2)_6]$
- 2. Hg[Co(SCN)₄]
- 3 $[Co(Py)_2Cl_2]$
- 4 {Ni(NH₃)₆|Cl₂
- 5 Ni(dmg)₂
- 6. [Cu(NH₃)₄]SO₄H2O
- 7. [Cr(NH₃)₆]Cl₃
- 8 Reinecke's salt

SEMESTER II

Organic Chemistry

Organic Synthesis 12
Quantitative Analysis 12
Record 4

Viva Voce 5

Organic Synthesis

Aldol condensation Dibenzal acetone from benzaldehyde.

Sandmeyer reactuion p-Chlorotoluene from p-toluidine

-coroacetic ester Condensation : Synthesis of ethyl-nbutylacetoacetate by A.E.E. condensation.

Cannizzaro reaction: 4-Chlorobenzaldehyde as substrate.

Friedel Crafts reaction b-Benzoyl propionic acid from succinic anhydride and benzene.

Aromatic electrophilic sustitutions: Synthesis of p-nitroaniline and phromoaniline

92:07.17

The Products may be Characterized by Spectral Techniques.

Quantitative Analysis

Determination of iodine and Saponification values of an oil sample.

Determination of DO, COD and BOD of water sample.

18 JEC 311 311

Physical Chemistry

Conductometry	12
Potentiometry/pH metry/ Polarimetry	13
Record	4
Viva Voce	5

Conductometry

- 1 To find out the strength of HCl solution by titrating against standard NaOH solution conductometrically
- 2. To find out the strength of HAc solution by titrating against standard NaOH solution conductometrically
- 3. To find out the strength of HCI and HAc in a mixture of both by titrating against standard NaOH solution conductometrically

Potentiometry/pH metry

- Estimation of halides (Cl', Br' and l') single ionsand in a mixture potentiometrically.
- 2 Determination of the strength of strong and weak acids in a given mixture using pH meter
- 3. Acid-base titration in a non-aqueous media using a pH meter.
- 4. Determination of activity and activity coefficient of electrolytes.
- 5. Determination of the dissociation constant of monobasic/polybasic acid by titrating against standard NaOH solution

Polarimetry

- 1. Determination of rate constant for hydrolysis/inversion of sugar using a polarimeter.
- 2 Enzyme kinetics-inversion of sucrose.

Books Suggested

- 1. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R.C. Denney, G.H. Jeffery and J. Mendham, ELBS.
- 2. Synthesis and Characterization of Inorganic Compounds, W.L. Jolly. Prentice Hall
- 3 Experiments and Techniques in Organic Chemistry, D.P. Pasto, C. Johnson and M. Miller, Prentice Hall.

- 4 Macroscale and Microscale Organic Experiments, K.L. Williamson, D.C. Health.
- 5. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 6. Handbook of Organic Analysis-qualitative and Quantitative. H. Clark, Adward Arnold.
- 7. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 8 Practical Physical Chemistry, A.M. James and F.E. Prichard, Longman.
- 9. Findley's Practical Physical chemistry, B.P. Levitt, Longman.
- 10. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 11. Inorganic Experimens, J. Derek Woolings, VCH.
- 12. Microscale Inorganic Chemistry, Z. Szafran, R.M., Pike and M.M. Singh, Wiley.
- 13 Practical Inorganic Chemistry, G. Marr and B. W. Rockett, Van Nostrad.
- 14. The systematic Identification of Organic Compounds, R.L. Shriner and D.Y. curlin.

Mrs 22/07

Wind of

		: -

Department of Higher Education, Govt. of M.P. Post Graduate Semester wise Syllabus as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 २०१३-१५

Scheme of Marks M. Sc. Chemistry SEMESTER - III

Paper	Comp/Opt	Paper Title	Code (MCH)	Max. Marks
I	Compulsory	APPLICATION OF SPECTROSCOPY-I	501	40+10 (CCE) = 50
II	Compulsory	PHOTOCHEMISTRY	502	40+10 (CCE) = 50
III	Compulsory	ENVIRONMENTAL CHEMISTRY	503	40+10 (CCE) = 50
IV	Optional -I	ANY TWO	504-508	40+10 (CCE) = 50
V	Optional -II			40+10 (CCE) = 50
_		PRACTICAL -1. Inorganic		33
		2. Organic		33
		3. Physical		34 100 →1
		Internshi p		
		Total		350 4

M. Sc. Chemistry SEMESTER - IV

Paper	Comp/Opt	Paper Title	Code (MCH)	Max. Marks
L	Compulsory	APPLICATION OF SPECTROSCOPY-II	511	40+ 10 (CCE) = 50
H	Compulsory	SOLID STATE CHEMISTRY	512	40+10 (CCE) = 50
III	Compulsory	BIOCHEMISTRY	513	40+10 (CCE) = 50
IV	Optional	ANY TWO From MCH 514-518	514-518	40+10 (CCE) = 50
V	Optional			40+ 10 (CCE) = 50
		PRACTICAL -1. Inorganic		33
	Y.	2. Organic		33
		3. Physical		34 =100
		Project Work		50
		Total		400

Shama

Mil

Pat 7/13

Department of Higher Education, Govt. of M.P.

Post Graduate Semester wise Syllabus

ns recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, भ.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2019-2011 २०१३-१५

Class / কধ্যা

: M.Sc.

Semester / सेमेस्टर

: III

Subject / विषय

: Chemistry

Title of Subject Group

: APPLICATION OF SPECTROSCOPY-I

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

: I (Code- MCH-501)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Compulsory

Max. Marks अधिकतम अंक

: 50

Particulars/विवरण

45-47	Semester III
Unit - 1	Electronic Spectroscopy: Electronic Spectral Studies for d ¹ d ⁹ systems in octahedral, tetrahedral and square planer complexes
Unit - 2	Vibrational Spectroscopy Symmetry and shapes of AB ₂ , AB ₃ , AB ₄ , AB ₅ and AB ₆ , mode of bonding of ambidentate ligands, nitrosyl, ethylenediamine and diketonato complexes, application of resonance Raman spectroscopy and its applications.
Unit - 3	Nuclear Magnetic Resonance Spectroscopy-I General introduction and definition, chemical shift, spin-spin interaction, shielding and deshielding mechanism, mechanism of measurement of chemical shift values and correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic) and other nuclei (alcohols, phenols, enols, carboxylic acids, amines, amides & mercapto),
Unit - 4	Nuclear Magnetic Resonance Spectroscopy-II Chemical exchange, effect of deuteration, Complex spin spin interaction between two, three, four and five nuclei (I order spectra) Stereochemistry, hindered rotation, Karplus curve-variation of coupling constant with disordered angle. NMR shift reagents, solvent effects, nuclear overhauser effect (NOE).
Unit - 5	Mössbauer Spectroscopy Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe ⁺² and Fe ⁺³ compounds including those of intermediate spin, (2) Sn ⁺² and Sn ⁺⁴ compounds nature of M-L bond, coordination number, structure and (3) detection of oxidation state and inequivalent MB atoms.

Jefan Mas (32) 7/1/3

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशांसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 2011 २०13 - 14

Class / কধা

: M.Sc.

Semester / सेमेस्टर

:]]]

Subject / विषय

: Chemistry

Title of Subject Group

: PHOTOCHEMISTRY

विषय समूह का शीर्षक

.

Paper No. / प्रश्नपत्र कमांक

: II (Code- MCH-502)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

Compulsory

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

Unit-1	Photochemical Reactions
	Interaction of electromagnetic radiation with matter, types of excitations, fate of excited
	molecule, quantum yield, transfer of excitation energy, actinometry.
Unit-2	Determination of Reaction Mechanism
	Classification, rate constants and life times of reactive energy state, determination of rate
	constants of reactions. Effect of light intensity on the rate of photochemical reactions.
	Types of photochemical reactions-photo dissociation, gas-phase photolysis.
Unit-3	Photochemistry of Alkenes
	Intramolecular reactions of the olefinic bond-geometrical isomerism, cyclisation reactions,
	rearrangement of 1,4- and 1,5-dienes.
	Photochemistry of Aromatic Compounds
	Isomerisations, additions and substitutions.
Unit-4	Photochemistry of Carbonyl Compounds
	Intramolecular reactions of carbonyl compounds-saturated, cyclic and acyclic, β , Υ
	unsaturated and α . β unsaturated compounds, cyclohexadienones. Intermolecular
	cyloaddition reactions-dimerisations and oxetane formation.
Unit-5	Miscellaneous Photochemical Reactions
	Photo-Fries reactions of annilides, Photo-Fries rearrangement. Barton reaction. Singlet
	molecular oxygen and its reactions. Photochemical formation of smog. Photodegradation
	of polymers. Photochemistry of vision.

1347113

Egen

in Mor

V

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विमाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केद्रीय अध्ययन मण्डल द्वारा अनुशांसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (刊河) 2010-2011 2013~14

Class / কধা

: M.Sc.

Semester / सेमेस्टर

: III

Subject / विषय

: Chemistry

Title of Subject Group

: ENVIRONMENTAL CHEMISTRY

विषय समूह का शीर्षक

.

Paper No. / प्रश्नपत्र कमांक

: III (Code- MCH-503)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Compulsory

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

	Particulars / विवरण
Unit-1	Atmospheric layers, Vertical temperature profile, heat/radiation budget of the earth atmosphere systems. Properties of troposphere, thermodynamic derivation of lapse rate. Temperature inversion. Calculation of Global mean temperature of the atmosphere. Pressure variation in atmosphere and scale height. Biogeochemical cycles of carbon, nitrogen, sulphur, phosphorus, oxygen. Residence times. Atmospheric Chemistry Sources of trace atmospheric constituents: nitrogen oxides, sulphurdioxide and other sulphur compounds, carbon oxides, chlorofluorocarbons and other halogen compounds,
	methane and other hydrocarbons. Tropospheric Photochemistry Mechanism of Photochemical decomposition of NO ₂ and formation of ozone. Formation of oxygen atoms, hydroxyl, hydroperoxy and organic radicals and hydrogen peroxide. Reactions of hydroxyl radicals with methane and other organic compounds. Reaction of OH radicals with SO ₂ and NO ₂ . Formation of Nitrate radical and its reactions. Photochemical smog meteorological conditions and chemistry of its formation.
Unit-2	Air Pollution Air pollutants and their classifications. Aerosols-sources, size distribution and effect on visibility, climate and health. Acid Rain Definition. Acid rain precursors and their aqueous and gas phase atmospheric oxidation reactions. Damaging effects on aquatic life, plants, buildings and health. Monitoring of SO ₂ and NO ₂ . Acid rain control strategies. Stratospheric Ozone Depletion Mechanism of Ozone formation, Mechanism of catalytic ozone depletion, Discovery of Antarctic Ozone hole and Role of chemistry and meteorology. Control Strategies. Green House Effect Terrestrial and solar radiation Spectra, Major green house gases and their sources and Global warming potentials. Climate change and consequences. Urban Air Pollution Exhaust emissions, damaging effects of carbon monoxide. Monitoring of CO. Control strategies.
Unit-3	Aquatic Chemistry and Water Pollution Redox chemistry in natural waters. Dissolved oxygen, biological oxygen demand, chemical oxygen demand, determination of DO, BOD and COD. Aerobic and anaerobic reactions of organic sulphur and nitrogen compounds in water acid base chemistry of fresh

Pat 113

Pepi

Mana Vi

Department of Higher Education, Govt. of M.P.

Post Graduate Semester wise Syllabus

us recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 2013-14

	water and sea water. Aluminum, nitrate and fluoride in water. Petrification. Sources of water pollution. Treatment of waste and sewage. Purification of drinking water, techniques of purification and disinfection.
Unit-4	Environmental Toxicology
	Toxic heavy metals: Mercury, lead, arsenic and cadmium. Causes of toxicity.
	Bioaccumulation, sources of heavy metals. Chemical speciation of Hg, Pb, As, and Cd.
	Biochemical and damaging effects.
	Toxic Organic Compound: Pesticides, classification, properties and uses of
	organochlorine and ionospheres pesticides detection and damaging effects.
	Polychlorinated biphenyls: Properties, use and environmental continuation and effects.
	Polynuclear Aromatic Hydrocarbons: Source, structures and as pollutants.
Unit-5	Soil and Environmental Disasters
	Soil composition, micro and macronutrients, soil pollution by fertilizers, plastic an metals.
	Methods of re-mediation of soil. Bhopal gas tragedy, Chernobyl, three mile island,
	Minimtata Disease, Sevoso (Italy), London smog.

Books Suggested

- 1. Environmental Chemistry, Colin Baird, W.H. Freeman Co. New York, 1998.
- 2. Chemistry of Atmospheres, R.P. Wayne, Oxford.
- 3. Environment Chemistry, A.K. De, Wiley Eastern, 2004.
- 4. Environmental Chemistry, S.E. Manahan, Lewis Publishers.
- 5. Introduction to atmospheric Chemistry, P.V. Hobbs, Cambridge.

POX 1117)

Marma

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2840-2844 293-14

OPTIONAL PAPERS

Out of the following select any two papers each of marks 50:

OPT-1	MCH-504 Organotransition Metal Chemistry
OPT-2	MCH-505 Polymers
OPT-3	MCH-506 Heterocyclic Chemistry
OPT-4	MCH-507 Physical Organic Chemistry
OPT-5	MCH-508 Chemistry of Materials

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाउ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2970-2011 2013-14

Class / কধা

: M.Sc.

Semester / सेमेस्टर

: III

Subject / विषय

: Chemistry

Title of Subject Group

: Organotransition Metal Chemistry

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

: OPT-1 Code- MCH-504

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Optional

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

	r articulars / 1990
l'nit-l	Alkyls and Aryls of Transition Metals Types, routes of synthesis, stability and decomposition pathways, organocopper in organic synthesis.
	Compounds of Transition Metal-Carbon Multiple Bonds Alkylidenes, alkylidynes, low valent carbenes and carbynes-synthesis, nature of bond, structural characteristics, nucleophilic and electrophilic reactions on the ligands, role in organic synthesis.
Unit-2	Transition Metal π -Complexes Transition metal π -Complexes with unsaturated organic molecules, alkenes, alkynes, allyl, diene, dienyl, arene and trienyl complexes, preparation, properties, nature of bonding and structural features. Important reactions relating to nucleophilic and electrophilic attack on ligands and to organic synthesis.
Unit-3	Transition organometalic compounds: Transition metal compounds with bonds to hydrogen, boron, silicon
Unit-4	Homogeneous Catalysis Stoichiometric reactions for catalysis, homogeneous catalytic hydrogenation, Zeigler-Natta polymerization of olefins, catalytic reactions involving carbon monoxide such as hydrocarbonylation of olefins (oxoreaction), explanation reactions, activation of C-H bond.
Unit-5	Fluxional Organometallic Compounds Flexionality and dynamic equilibrium in compounds such as η^2 olefine, η^3 -allyl and dienyl complexes.

Book Suggested

- 1. Principles and Application of Organotransition Metal Chemistry, J.P. Collman, L.S. Hegsdus, J.R. Norton and R.G. Finke, University Science Books.
- 2. The Organometallic Chemistry of the Transition Metals, R.H. Crabtree. John Wiley.

3. Metallo-organic Chemistry, A.J. Pearson, Wiley.

4. Organometallic Chemistry, R.C. Mehrotra and A. Singh New Age International.

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (积习) 20+10-20+4 2013-14

Class / कक्षा

: M.Sc.

Semester / सेमेस्टर

: [[]

Subject / विषय

Title of Subject Group

: Chemistry

: Polymers

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: OPT-2 (Code- MCH-505) : Optional

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

Unit-1	Basics
	Importance of polymers. Basic concepts: Monomers, repeat units, degree of
	polymerization Linear, branched and network polymers. Classification of polymers.
	Polymerization: condensation, addition/radical chain-ionic and co-ordination and
	copolymerization. Polymerization conditions and polymer reactions. Polymerization in
	homogeneous and heterogeneous systems.
Unit-2	Polymer Characterization
	Polydispersion-average molecular weight concept. Number, weight and viscosity average molecular weights. Polydispersity an molecular weight distribution. The practical significance of molecular weight. Measurement of molecular-weights. End-group, viscosity, light scattering, osmotic and ultracentrifugation methods.
Unit-3	Analysis and testing of polymers
	Chemical analysis of polymers, spectroscopic methods, X-ray diffraction study.
	Microscopy. Thermal analysis and physical testing-tensile strength. fatigue, impact, tear
	resistance, Hardness and abrasion resistance.
Unit-4	Inorganic Polymers
	A general survey and scope of Inorganic Polymers special characteristics, classification,
	homo and hetero atomic polymers.
	Structure, Properties and Applications of
	a. Polymers based on boron-borazines, boranes and carboranes.
	b. Polymers based on Silicon, silicone's polymetalloxanes and polymetallosiloxanes,
	silazanes.
Unit-5	Structure, Properties and Application of Polymers
	a. Polymers based on Phosphorous-Phosphazenes, Polyphosphates
	b. Polymers based on Sulphur-Tetrasulphur tetranitride and related compounds.
	c. Co-ordination and metal chelate polymers.

Book Suggested

- 1. Inorganic Chemistry, J.E. Huheey, Harper Row.
- 2. Developments in Inorganic polymer Chemistry, M.F. Lappert and G.J. Leigh.
- 3. Inorganic polymers- N.H. Ray.
- 4. Inorganic polymers, Graham and Stone.
- 5. Inorganic Rings and Cages: D.A. Armitage.
- 6. Textbook of Polymers Science, F.W. Billmeyer Jr. Wiley.
- 7. Contemporary Polymer Chemistry, H.R. Al cock and F.W. Lambe, Prentice Hall.

Department of Higher Education, Govt. of M.P.

Post Graduate Semester wise Syllabus as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशांसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (대河) 2010 2011 고이3 -- 수

Class / কধা

: M.Sc.

Semester / सेमेस्टर

: III

Subject / विषय

: Chemistry

Title of Subject Group

: Heterocyclic Chemistry

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

: OPT-3 (Code- MCH-506)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Optional

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

	Particulars / 1998
Unit-1	Nomenclature of Heterocycles Replacement and systematic nomenclature (HantzsMCH-Widman system) for monocyclic fused and bridged heterocycles. Aromatic Heterocycles General chemical behaviour of aromatic heterocycles, classification (structural type), criteria of aromaticity (bond lengths, ring current and chemical shifts in 1H NMR-spectra. Empirical resonance energy, delocalization energy and Dewar resonance energy, diamagnetic susceptibility exaltations). Heteroaromatic reactivity and tautomerism in aromatic heterocycles.
Unit-2	Non-aromatic Heterocycles Strain-bond angle and torsional strains and their consequences in small ring heterocycles. Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,3-diaxial interaction. Atereo-electronic effects anomeric and related effects. Attractive interactions-hydrogen bonding and intermolecular nucleophilic electrophilic interactions. Heterocyclic synthesis-principles of heterocyclic synthesis involing cyclization reactions and cycloaddition reactions.
Unit-3	Small Ring Heterocycles Three-membered and four-membered heterocycles-synthesis and reactions of azirodines, oxiranes, thiranes, azetidines, oxetanes and thietanes. Benzo-Fused Five-Membered Heterocycles Synthesis and reactions including medicinal applications of benzopyrroles, bezofurans and benzothiophenes.
Unit-4	Meso-ionic Heterocycles General classification, chemistry of some important meso-ionic heterocycles of type-A and B and their applications. Six-Membered Heterocycles with one Heteroaton Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium & thiopyrylium salts and phridones. Synthesis and reactions of quionlizinium and benzopyrylium salts, coumarins and chromones.
Unit-5	Six Membered Heterocycles with Two or More Heteroatoms: Synthesis and reactions of diazones, triazines, tetrazines and thiazines. Seven-and Large-Membered Heterocycles: Synthesis and reactions of azepines, oxepines, thiepines, diazepines, thiazepines, azocines, diazocines, dioxocines and dithiocines. Heterocyclic Systems Containing P, As, Sb and B Heterocyclic rings containing phosphorus: Introduction, nomenclature, synthesis and

(32/71/2

Maura

Department of Higher Education, Govt. of M.P.

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 २०१३-/५

characteristics of 5- and 6-membered ring systemsphosphorinaes, phosphorines, phospholanes and phospholes. Heterocyclic rings containing As and Sb: Introduction, synthesis and characteristics of 5- and 6-membered ring system. Heterocyclic rings containing B: Introduction, synthesis reactivity and spectral characteristics of 3- 5- and 6-membered ring system.

Book Suggested

- 1. Heterocyclic Chemistry Vol. 1-3, R.R. Gupta, M. Kumar and V.Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic chemistry J.A. Joule, K. Mills and g.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scietific Techinal.
- 5. Contemporary Hetrocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Johnwiely.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katrizky and C.W. Rees, eds. Pergamon Press.

Pat 7/13

Maur

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2013 २०१३ - १५

Class / কধা

: M.Sc.

Semester / सेमेस्टर

: **III**

Subject / विषय

: Chemistry

Title of Subject Group

: Physical Organic Chemistry

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कर्माक

: OPT-4 (Code- MCH-507)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Optional

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

	A AT CICUIATS / 1941 -1
Unit-1	Concepts in Molecular Orbital (MO) and Valence Bond (VB) Theory
	Introduction to Huckel molecular orbital (MO) method as a mean to explain modern
	theoretical methods. Advanced techniques in PMO and FMO theory. Molecular
	mechanics, semi empirical methods and ab initio and density functional methods. Scope
	and limitations of several computational programmes.
Unit-2	Quantitative MO theory: Huckel molecular orbital (HMO - method as applied to ethene,
	allyl and butadiene. Qualitative MO theory ionisation potential. Electron affinities. MO
	energy levels. Orbital symmetry, Orbital interaction diagrams. MO of simple organic
	systems such as ethene, allyl, butadiene, methane and methyl group. Conjugation and
	hyper-conjugation. Aromaticity.
	Valence bond (B) configuration mixing diagrams. Relationship between VB configuration
	mixing and resonance theory. Reaction profiles. Potential energy diagrams. Curve-
	crossing model-nature of activation barrier in chemical reactions.
Unit-3	Principles of Reactivity
	Mechanistic significance of entropy, enthalpy and Gibb's free energy. Arrrhenius equation.
	Transition state theory. Uses of activation parameters, Hammond's postulate, Bell-Evans-
	Polanyi Principle. Potential energy surface model. Marcus theory of electron transfer.
	Reactivity and selectivity principles.
	Kinetic Isotope Effect
	Theory of isotope effects. Primary and secondary kinetic isotope effects. Heavy atom
	isotope effects. Tunneling effect. Solvent effects.
	Structural Effects on Reactivity
	Linear free energy relationships (LFER). The Hammett equation, substituent constants,
	theories of substituent effects. Interpretation of δ -values. Reaction constants. Deviations
	from Hammett equation. Dualparameter correlatins, inductive substituent constant. The
	Taft model, s1 and sR scales.
Unit-4	Acids, Bases, Electrophiles, Nucleophiles and Catalysis
	Acid-base dissociation, Electronic and structural effects, acidity and basicity. Acidity
	functions and their applicatins, hard and soft acids and bases. Nucleophilicity scales.
	Nucleofugacity. The α-effect. Ambivalent nucleophiles. Acid-base catalysis-specific and
	general catalysis. Bronsted catalysis, Nucleophilic and electrophilic catalysis. Catalysis by
	noncovalent binding-micellar catalysis.
	Steric and Conformation Properties
	Various type of steric strain and their influence on reactivity. Steric acceleration.
	Molecular measurements of steric effects upon rates. Steric LFET, Conformational barrier
	to bond rotation-spectroscopic detection of individual conformers. Acyclic and

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 2013-14

	monocyclic systems. Rotation around partial double bonds. Winstein-Holness and Curtin-Hammett principle.
Unit-5	Nucleophilic and Electrophilic Reactivity Structural and electronic effects on SN¹ and SN² reactivity. Solvent effect, Kinetic isotope effects. Intramolecular assistance. Electron transfer nature of SN² reaction. Nucleophilicity and SN² reactivity based on curved crossing mode. Relationship between polar and electron transfer reactions, SR _N ¹ mechanism. Electrophilic reactivity, general mechanism. Kinetic of S _E ² Ar reaction. Structural effects on rates and selectivity. Curve-crossing approach to electrophilic reactivity.
	Supramolecular Chemistry Properties of covalent bonds-bond length, inter-bond angles, force constant, bond and molecular dipole moments. Molecular and bond polarizability, bond dissociation enthalpy, entropy. intermolecular forces, hydrophobic effects. Electrostatic, induction, dispersion and resonance energy, magnetic interactions, magnitude of interaction energy, forces between macroscopic bodies, medium effects. Hydrogen bond.

Book Suggested:

- 1. Molecular Mechanics, U. Burket and N.L. Allinger, ACS Monograph 177, 1982.
- 2. Orgaic Chemists. Book of Orbitals: L. Salem and W.L. Jorgensen, Academic Press.
- 3. Mechanism and Theory in Organic chemistry, T.H. Lowry and K.C. Richadson, Harper and Row.
- 4. Introduction to Theoretical Organic Chemistry and Molecular Modeling.
- 5. Physical Organic Chemistry: N.S. Isaacs, ELBS/Longman.
- 6. Supramolecular Chemistry: Concepts and Perspective, J.M. Lehn, VCH.
- 7. The Physical Basis of Organic Chemistry: H. Maskill, Oxford University Press.

347/13

Marina

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 २०१६-२०१4

Class / কধা

: M.Sc.

Semester / सेमेस्टर

:]]]

Subject / विषय

: Chemistry

Title of Subject Group

: Chemistry of Materials

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

: OPT-5 (Code- MCH-508)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Optional

Max. Marks अधिकतम अंक

: 50

Particulars / विवरण

	Particulars / Idde II
Unit-1	A. Multiphase materials
	Ferrous alloys; Fe-C phase transformations in ferrous alloys; stainless steels, non ferrous
	alloys, properties of ferrous and non-ferrous alloys and their applications.
	B. Glasses, Ceramics, Composites and Nanomaterials
	Glassy state, glass formers and glass modifiers, applications. Ceramic structures,
	mechanical properties, clay products. Refractories, characterizations, properties and
	applications.
	Microscopic composites; dispersion-strengthened and particle-reinforced, firbre-reinforced
	composites, macroscopic composites. Nanocrystalline phase, preparation procedures,
	special properties, applications.
Unit-2	A. Thin Films and Langmuir-Blodgett Films
	Preparation techniques; evaporation/sputtering, chemical processes, MOCVD, sol-gel etc.
	Languir-Blodgett (LB) film, growth techniques, photolithography, properties and
	applications of thin and LB films.
	B Liquid Crystals
	Mesmorphic behaviour, thermotropic liquid crystals, positional order, bond orientational
	order, nematic and smectic mesophases; smectic-nematic transition and clearing
	temperature-homeotropic, planer and schlieren textures, twisted nematics, chiral nematics,
	molecular arrangement in smectic A and smectic C phases, optical properties of liquid
	crystals. Dielectric susceptibility and dielectric constants. Lyotropic phases and their
	description of ordering in liquid crystals.
Unit-3	A. Polymeric Materials
	Molecuar shape, structure and configuration, crystallinity, stress-strain behaviour, thermal
	behaviour, polymer types and their applications, conducting and ferro-electric polymers.
	B. Ionic Conductors
	Types of ionic conductgors, mechanism of ionic conduction, interstitial jumps (Frenkil);
	vacancy mechanism, diffusion superionic conductors; phase transitions and mechanism of
	conduction in superionic conductors, examples and applications of ionic conductors.
Unit-4	High T _c Materials
	Defect perovskites, high T _c superconductivity in cuprates, preparation and characterization
	of 1-2-3 and 2-1-4 materials, normal state properties; anisotropy; temperature dependence
	of electrical resistance; optical phonon modes, superconducting state; heat capacity;
	coherence length, elastic constants, position lifetimes, microwave absorption-pairing and
	multigap structure in high T _c materials, applications of high T _c materials.
Unit-5	A. Materials of Solid State Devices
	Rectifiers, transistors, capacitors-IV-V compounds, low-dimentional quantum structures;
1-2	Rectificis. transistors, capacitors-1 v - v compounds, jow-difficility and quantum structures,

Department of Higher Education, Govt. of M.P. Post Graduate Semester wise Syllabus as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010-2011 2013-14

optical properties.

B. Organic Solids, Fullerenes, Muleuclar Devices

Conducting organics, organic superconductors, magnetism in organic materials.

Fullerenes-doped, fullerenes as superconductors.

Moleuclar rectifiers and transistors, artificial phytosynthetic devices, optical storage memory and switches-sensors.

Nonlinear optical materials; nonlinear optical effects, second and third order-molecular hyperpolarisability an second order electric susceptibility – materials for second and third harmonic generation.

Book Suggested

- 1. Solid State Physics, N.W. Ashcroft and N.D. Mermin, Saunders College.
- 2. Materials Science and Engineering, An Introduction, W.D.Callister, Wiley.
- 3. Principles of the Solid State, H.V. Keer, Wiley Eastern.
- 4. Materials Sciences, J.C.Anderson, K.D.Leaver, J.M.Alexander and R.D. Rawlings, ELBS
- 5. Thermotropic liquid Crystals, Edl, G.W. Gray, John Wiley.
- 6. Handbook of Liquid Crystals, Kelker and Hatz, Chemie Verlag.

327113

Mas Klis

Practicals

SEMESTER III 2013-14

(Duration: 6-8 hrs in each branch)

Practical examination shall be conducted separately for each branch.

Inorganic Chemistry

Quantitative determinations of a three component mixture 12

Chromatographic Separations 12

Record 04

Viva Voice 05

Quantitative determinations of a three component mixture :

Quantitative analysis of tri-component mixture of metal ions using gravimetric and volumetric techniques.

- (i) Mixed solution of Cu2+, Ni2+ and Zn2+
- (ii) Mixed solution of Cu2+, Ni2+ and Mg2+
- (iii) Mixed solution of Cu2+, Ag+ and Fe2+
- (iv) Mixed solution of Ni2+, Zn2+ and Fe2+

Chromatographic Separations

Thin-layer chromatography-separation of nickel, manganese, cobalt and zinc. Determination of Rf values.

Separation of cations and anions by Paper Chromatography.

Cadmium and zinc

Zinc and magnesium.

SEMESTER III

Organic Chemistry

Multi-step Synthesis of Organic Compounds 16

Paper Chromatography 08

Record 04

Viva Voice 05

Multi-step Synthesis of Organic Compounds

The exercise should illustrate the use of organic reagents and may involve purification of the products by chromatographic techniques.

Beckmann rearrangement : Benzanilide from benzene Benzene -> Benzophenone -> Benzphenone oxime -> Benzanilide

32/11/3

Mas Khal

Benzilic acid rearrangement: Benzilic acid from benzoin Benzoin -> Benzil -> Benzilic acid Synthesis of heterocyclic compounds Skraup synthesis: Preparation of quinoline from aniline Fisher Indole synthesis: Preparation of 2-phenylindole from phenylhydrazine.

Enzymatic synthesis Enzymatic reduction: reduction of ethyl acetoacetate using Baker's yeast to yield enantiomeric excess of S (+) ehtyl-3-hydroxybutanoate and determine its optical purity.

Thin layer Chromatography

Separation and identification of the sugars / amino acids present in the given mixture by TLC chromatography and determination of RF values

SEMESTER III

Practical

(Duration: 6-8 hrs in each branch)

Physical Chemistry

Spectroscopy	13
Conductometry / Equilibrium and Dissociation Constants	12
Record	04
Viva Voice	05

Conductometry

- Determination of solubility and solubility product of sparingly soluble salts (e.g. PbSO4, BaSO4) conductometrically.
- Determination of the dissociation constant of acetic acid.
- 3. A commercial sample of vinegar is suspected of having H₂SO₄. Show conductometriclly, if it is so and estimate the impurity of mineral acid if present.

Spectroscopy

- 1 Determination of PKa of an indicator (e.g. methyl red) in (a) aqueous and (b) micellar media.
- To verify Beers law for solution of K₂Cr₂O₇ and KMnO₄ using spectrophotometer and determine the concentrations in their solutions of unknown concentration.
- 3. To determine the composition of a binary mixture containing say K₂Cr₂O₇ or KMnO₄ spectrophotometrically.
- 4. Determination of stoichiometry and stability constant of Ferricisothicoyanation complex ion in solution.

Equilibrium and Dissociation Constants

- 1. To determine the equilibrium constant of the esterification reaction between acetic acid and ethanol.
- 2. To determine the equilibrium constant of the keto-enol tautomerism of ethylacetoacetate.

13/11/13

More

KAL

3. To determine the dissociation constant of picric acid by studying its distribution between benzene and water.

Books Suggested

- 1. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R.C. Denney, G.H. Jeffery and J. Mendham, ELBS.
- 2. Synthesis and Characterization of Inorganic Compounds, W.L. Jolly. Prentice Hall.
- 3 Experiments and Techniques in Organic Chemistry, D.P. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 4. Macroscale and Microscale Organic Experiments, K.L. Williamson, D.C. Health.
- 5. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 6. Handbook of Organic Analysis-qualitative and Quantitative. H. Clark, Adward Arnold.
- 7. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 8. Practical Physical Chemistry, A.M. James and F.E. Prichard, Longman.
- 9. Findley's Practical Physical chemistry, B.P. Levitt, Longman.
- 10. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 11. Inorganic Experimens, J. Derek Woolings, VCH.
- 12. Microscale Inorganic Chemistry, Z. Szafran, R.M. Pike and M.M. Singh, Wiley.
- 13. Practical Inorganic Chemistry, G. Marr and B. W. Rockett, Van Nostrad.
- 14. The systematic Identification of Organic Compounds, R.L. Shriner and D.Y. curlin.

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाद्यकग

केंद्रीय अध्ययन मण्डल द्वारा अनुशसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

Class / কঞ্চা

M.Sc.

Semester / सेमेस्टर

· IV

Subject / विषय

Chemistry

Title of Subject Group

: APPLICATION OF SPECTROSCOPY-II

विषय समृह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

(Code- MCH-511)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य : Compulsory

Max. Marks अधिकतम अंक

Particulars/विवरण

	T articular ships of
Unit-1	Ultraviolet and Visible spectroscopy Various electronic transitions (185-800 nm) Beer-Lambert law, Effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes, Fieser Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic compounds. Steric effect in biphenyls.
Unit-2	Infrared Spectroscopy Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance.
Unit - 3	Nuclear Magnetic Resonance of Paramagnetic Substances in Solution The contact and Pseudo contact shifts, factors affecting nuclear relaxation, some applications including biochemical systems, an overview of NMR of metal nuclide with emphasis on ¹⁹⁵ Pt and ¹¹⁹ Sn NMR.
Unit-4	Carbon-13 NMR Spectroscopy General considerations, chemical shift (aliphatic olefinic, alkyne, aromatic, heteroaromatic and carboynl carbon), coupling constants. Two dimension NMR spectroscopy-COSY, NOESY, DEPT, HMBC and HMQC techniques.
Unit-5	Mass Spectrometry Introduction ion production E1, C1 FD, ESI and FAB, factors affecting fragmentation, ion analysis, ion abundance Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak. Me Lafterty rearrangement. Nitrogen rule. High resolution mass spectrometry. Structure elucidation of simple molecules using UV – Visible, IR, NMR and mass spectral techniques.

Sull 8- Oulin 21-2-12

Department of Higher Education, Govt. of M.P.
Post Graduate Semester wise Syllabus
as recommended by Central Board of Studies and approved by the Governor of M.P.
उच्च शिक्षा विभाग, म.प्र. शासन
स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम
केदीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित
Session (सत्र) 2010 — 2011

Suggested Readings:

1. Physical Methods for Chemistry, R.S. Drago, Saunders Compnay.

- 2. Structural Methods in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, ELBS.
- 3. Infrared and Raman Spectral; Inorganic and Coordination Compounds K. Nakamoto, Wiley.
- 4. Progress in Inorganic Chemistry vol., 8, ed., F.A. Cotton, vol., 15 ed. S.J. Lippard, Wiley.
- 5. Transition Metal Chemistry ed. R.L. Carlin vol. 3 dekker.
- 6. Inorganic Electronic Spectroscopy, A.P.B. Lever, Elsevier.
- 7. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, .V. Parish, Ellis Haywood.
- 8. Practical NMR Spectroscopy, M.L. Martin, J.J. Deepish and G.J. Martin, Heyden.
- 9. Spectrometric Identification of Organic Compounds, R.M. Silverstein, G.C. Bassler adn T.C. Morrill, John Wiley.
- 10. Introduction to NMR spectroscopy, R.J. Abraham, J. Fisher and P. Loftus, Wiley
- 11. Application of Spectroscopy of Organic Compounds, J.R. Dyer Prentice Hall.
- 12. Spectroscopic Methods in Organic Chemistry D.H. Williams, I. Fleming, Tata McGraw-Hill.
- 13. Structural Methods in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, ELBS.
- 14. Introduction to NMR spectroscopy, R.J. Abraham, J. Fisher and P. Loftus, Wiley.

Selle 1

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

रनातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशांसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (মর) 2010 - 2011

Class / কধা

: M.Sc.

Semester / सेमेस्टर

ΙV

Subject / विषय

: Chemistry

Title of Subject Group

SOLID STATE CHEMISTRY

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

· H (Code- MCH-512)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

: Compulsory

Max. Marks अधिकतम अंक

50

Particulars / विवरण

	Particulars / Idage		
Unit-1	Solid State Reactions		
	General principles, experimental procedure, co-precipitation as a precursory to solid state		
	reactions, kinetics of solid state reactions.		
Unit-2	Crystal Defects and Non-Stoichiometry		
	Perfect and imperfect crystals, intrinsic and extrinsic defects-point defects, line and plane		
	defects, vacancies-Schottky detects and Frenkel defects. Thermodynamics of Schottky and		
	Frenkel defect formation, colour centres, non-stoichiometry and defects.		
Unit-3	Electronic Properties and Band Theory Metals insulators and semiconductors, electronic structure of solidsband theory band structure of metals, insulators and semiconductors, Intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, super conductors. Optical properties-Application of optical and electron microscopy. Magnetic Properties-Classification of materials: Effect of temperature calculation of magnetic moment, mechanism of ferro and antiferromagnetic ordering super exchange.		
Unit-4	Organic Solids Electrically conducting solids, organic charge transfer complex, organic metals, new superconductors.		
Unit-5	Liquid Crystals: Types of liquid crystals: Nematic, Smectic, Ferroelectric, Antiferroelectric, Various theories of LC, Liquid crystal display, New materials.		

Books Suggested.

- 1. Solid state chemistry and its applications, A.R. West. Peenum.
- 2. Principles of the Solid State, H.V. Keer, Wiley Eastern.
- 3. Solid State Chemistry, N.B. Hannay.
- 4. Solid State Chemistry, D.K. Chakrabarty, New Wiley Eastern.

Sur s. Ouli-

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग म.प्र शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशांसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

Class / कक्षा

: M.Sc.

Semester / सेमेस्टर

: IV

Subject / विषय

Chemistry

Title of Subject Group

BIOCHEMISTRY

विषय समृह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

III (Code- MCH-513)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य : Compulsory

Max. Marks अधिकतम अंक

50

Particul	ars /	विवरण
I di titu	14131	1441-1

Unit-1	Metal Ions in Biological Systems Bulk and trace metals with special reference to Na, K, Mg, Ca, Fe, Cu, Zn, Co, and
	K+/Na+ pump.
	Bioenergetics and ATP Cycle.
	DNA polymerisation, glucose storage, metal complexes in transmission of energy;
	chlorophyll's, photosystem I and photosystem II in cleavage of water. Transport and Storage of Dioxygen
	Heam proteins and oxygen uptake structure and function of haemoglobin's, mygolobin,
	haemocyanms and hemerythrin, model synthetic complexes of iron, cobalt and copper.
Unit-2	Electron Transfer in Biology
	Structure and function of metal of proteins in electron transport processes cytochrome's and ton-sulphure proteins, synthetic models.
	Nitrogen fixation
	Biological nitrogen fixation, and its mechanism, nitrogenase, Chemical nitrogen fixation.
Unit-3	Introduction and historical perspective, chemical and biological catalysis, remarkable properties of enzymes like catalytic power, specificity and regulation. Nomenclature and classification, extraction and purification. Fischer's lock and key and Koshalid's induced fit hypothesis, concept and identification of active site by the use of inhibitors, affinity labeling and enzyme modification by site-directed mutagenesis. Enzyme kinetics, Michael's-Menten and Lineweaver Burk plots, reversible and irreversible inhibition. Mechanism of Enzyme Action
	Transition-state theory, orientation and Sterie effect, acid-base catalysis, covalent catalysis, strain or distortion. Examples of some typical enzyme mechanisms for chemotrypsin, ribonuclease, lysozyme and carboxypeptidase. Kinds of Reactions Catalysed by Enzymes
	Nucleophilic displacement on a phosphorus atom, multiple displacement reactions and the coupling of ATP cleavage to endergonic processes. Transfer of sulphate, addition and elimination reactions, enolic intermediates in Isomerisations reactions, b-Cleavage and condensation, some isomerization and rearrangement reactions. Enzyme catalyzed carboxylation and decarboxylation.
Unit-4	Co-Enzyme Chemistry
	Cofactors as derived from vitamines, coenzymes, prosthetic groups, apoenzymes.
	Structure and biological functions of coenzyme A, thiumine pyrophosphate, pyridoxal
	phosphate, NAD+, NADP+, FMN, FAD, lipoic acid, vitamin B12. Mechanisms of
	reactions catalyzed by the above cofactors. Enzyme Models

Suce S. Juli:

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र शासन

रनातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशसित तथा न प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

	Host-guest chemistry, chiral recognition and catalysis, molecular recognition, molecular asymmetry and prochirality Biometric chemistry, crown ether, cryptates. Cyclodextrins, cyclodextrion-based enzyme models, chixarenes, ionospheres, micelles synthetic enzymes or synzymes Biotechnological Applications of Enzymes large-scale production and purification of enzymes, techniques and methods of immobilization of enzymes, effect of immobilization on enzyme activity, application of immobilized enzymes, use of enzymes in food and drink industry-brewing and cheesemaking, syrups from eron starch, enzymes as targets for drug design. Clinical uses of
Unit-5	enzymes, enzyme therapy, enzymes and recombinant DNA Technology. Biological Cell and its Constituents
	Biological cell, structure and functions of proteins, enzymes, DNA and RNA in living systems. Helix coils transition. Bioenergetics Standard free energy change in biochemical reactions, exergonic, endergonic. Hydrolysis of ATP, synthesis of ATP from ADP Biopolymer Interactions Forces involved in biopolymer interactions. Electrostatic charges and molecular
	expansion, hydrophobic forces, dispersion force interactions. Multiple equilibrium and various types of bidning processes in biological systems. Hydrogen ion titration curves. Cell Membrane and Transport of Ions
	Structure and functions of cell membrane, ion transport through cell membrane,
	irreversible thermodynamic treatment of membrane transport. Nerve conduction.

Book Suggested

- 1 Principles of Biomorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.
- 2. Biomorganic Chemistry, 1. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University Science Books.
- 3. Inorganic biochemistry vol. I and II ed. G.L. Eichhorn, Elsever.
- 4 Progress in Inorganic Chemistry, Vol 18 and 38 ed J.J. Lippard, Wiley.
- 5 Bioorganic Chemistry: A chemical Approach to Enzyme Action, Hermann Dugas and C. Penny, Springer Verlag
- 6. Understanding Enzymes, Trevor Palmer, Prentice Hall
- 7. Enzyme Chemistry: Impact and applications, Ed. Collin J suckling, chemistry.
- 8. Enzyme Mechanisms Ed. M.I. Page and A Williams, Royal Society of Chemistry.
- 9. Fundamentals of Enzymology, N.C. Price and L. Stevens. Oxford University Press.
- 10. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael ID. Trevan, Hohn Wiley.
- 11. Enzymatic Reaction Mechanisms C. Walsh. W.H. Freeman.
- 12. Enzyme Structure and Mechanism, A Fersht, W. H. Freeman
- 13. Biochemistry: The Chemical Reactions of Living Cells, D.E. Metzler, Academic Press.

Sul & oli

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाउँ यकप

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

Class / कक्षा

M.Sc.

Semester / सेनेस्टर

Subject / विषय

Chemistry

Title of Subject Group

Organic Synthesis

विषय समूह का शीर्षक

Paper No. / प्रश्नपत्र क्रमाक

OPT-1 (Code- MCH-514)

Compulsory / अनिवार्य या Optional / वैकत्पिक अनिवार्य

Optional

Max. Marks अधिकतम अंक

50

Particulars / Parvo

Particulars / विवरण		
Unit-1	Disconnection Approach An introduction to synthesis and synthetic equivalents. Disconnection approach, functional group inter-conversions, the importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reaction, amine synthesis. Protection of groups, chemo, region and stereo selectivity.	
Unit-2	One Group C-C Disconnections Alcohols and carbonyl compounds, regioselectivity, alkene synthesis, use of acetylenes and aliphatic Nitro compounds in organic synthesis. Two Group C-C Disconnections Diels-Alder Reaction, 1,3-diffunctionalised compounds, a-b- unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds. Micheal addition and Robinson annelation.	
Unit-3	Oxidation Introduction, Different oxidative processes. Hydrocarbons-alkenes, aromatic rings, saturated C-H groups (activated and unactivated) Alcohols, diols, aldehyde's, ketones, ketals and carboxylic acids. Amines, hydrazines, and sulphides Oxidations with ruthenium tetraoxide, iodobenzene diacetate and thallium. (III) Nitrate Reduction Introduction, Different reductive processes. Alkanes, alkenes, alkynes, and aromatic rings. Carbonyl compounds-aldehydes, ketones, acids and their derivatives. Epoxides. Nitro, nitroso, azo and oxime groups. Expoxide. Nitro, Nitroso, azo and oxime groups. Hydrogenolysis.	
Unit-4	Organometallic Reagents Principle, preparations, properties and applications of the following in organic synthesis with mechanistic details. Group I and II metal organic compounds Li, Mg, Hg, Cd, Zn and Ce Compounds.	
Unit-5	Synthesis of some complex molecules: Application of the above in the synthesis of following compounds: Canphor, longifoline, cartisone, reserpine, vitamin D, juvabion, aphidicolin and fredericamycin. A	

Suggested Readings:

Designing Organic Synthesis, S. Warren Wiley.

Organic Synthesis-Concept, Methods and Starting Materials, J. Fuhrhop
 Some Modern Methods of Organic Synthesis. W. carruthers, Cambridge Univ. Press.

4. Modern Synthetic Reactions H.O. House, W.A. Benjamin

Advanced Organic Chemistry: Reactions, Mechanisms and Structure, J. March. Wiley,

Principles, of Organic Chemistry Part B. F. J. Carey and R. J. Sundberg, Plenum Press

Sul 8. Juli

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म प्र. के राज्यपाल द्वारा अनुमोदित

Session (মন্ন) 2010 - 2011

Class / कक्षा

M.Sc.

Semester / सेमेस्टर

· 17

Subject / विषय

Chemistry

Title of Subject Group

Chemistry of Natural Products

विषय समृह का शीर्षक

OPT-2 (Code- MCH-515)

Paper No. / प्रश्नपत्र कमांक Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

Optional

Max. Marks अधिकतम अंक

50

Particulars / विवरण

	l'articulars / ladeul		
Unit-1	Terpenoids and Carotenoids Calcifications, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination, stereochemistry, biosynthesis and synthesis of the following representative molecules. Citral, Geraniol α-Terpeneol Menthol, Farnesol, Zingiberene, Santonin, Phytol, Abietic acid and β-Carotene		
Unit-2	Alkaloids Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic ring role of alkaloids in plants. Structure, stereochemistry, synthesis and biosynthesis of the following: Ephedrine, (+)- Coniine, Nicotine, Atropine, Quinine and Morphine.		
Unit-3	Steroids Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry Isolation, Structure determination and synthesis of Cholesterol, Bile acids, Androsterone Testosterone, Estrone, Progesterone, Aldosterone, Biosynthesis of Steroids.		
Unit-4	Plant Pigments Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, Luteolin Quercetin, Myroetin, Quercetin 3-glucoside, Vitexin Diadzein, Aureusin, Cyanidin-7arabinoside, Cyanidin, Hirsutidin, Biosynthesis of flavonoids: Acetate pathway and Shikimic acid pathway. Prophyrins Structure and synthesis of Haemoglobin and Chlorophyll.		
Unit-5	Prostaglandin Occurrence, nomenclature, classification, biogenesis and physiological effects. Synthesis of PGE2 and PGF2a. Pyrethroids and Rotenones Synthesis and reactions of Pyrethroids and Rotenones. (For structure elucidation, emphasis is to be placed on the use of spectral parameters wherever possible).		

Suggested Readings:

- 1 Natural Products: Chemistry and Biological Significance, J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope adn J B Harbome, Longman, Esses.
- 2. Organic Chemistry Vol 2 1L. Finar, ELBS
- 3. Stereoselective Synthesis: A Practical Approach, M Norgradi, VCH
- 4. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier
- 5. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed Kurt Hostettmann, M.P. Gupta and A. Marston, harwood Academic Publishers.

Sur S. Oulin

Department of Higher Education, Govt. of M.P.
Post Graduate Semester wise Syllabus
as recommended by Central Board of Studies and approved by the Governor of M.P.
उच्च शिक्षा विभाग, म.प्र. शासन
स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाड्यकम
केंदीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 — 2011

- 6. Introduction to Flavonoids, B.A. Bohm. Harwood Academic Publishers.
- 7. New Trends in Natural Product chemistry, Ataaur Rahman and M.L. Choudhary, Harwood Academic Publishers.
- 8. Insecticides of Natural Origin, Sukh Dev, Harwood Academic Publishers.

8 Oly

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, मग्र शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाद्यकम केंदीय अध्ययन मण्डल द्वारा अनुशंसित तथा म प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

Class / কধা

· M.Sc.

Semester / सेमेस्टर

. ĮV

Subject / विषय

Chemistry

Title of Subject Group

Analytical Chemistry

विषय समूह का शीर्षक

OPT-3 (Code-MCH-516)

Paper No. / प्रश्नपत्र कमांक Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य

Optional

Max. Marks अधिकतम अंक

50

Particulars / Part

	Particulars / विवरण
Unit-1	Introduction Role of analytical chemistry Classification of analytical methods classical and instrumental. Types of instrumental analysis. Selecting an analytical method. Neatness and cleanliness laboratory operations and practices. Analytical balance. Techniques of weighing, errors. Volumetric glassware cleaning and calibration of glassware. Sample Volumetric glassware cleaning and Calibration of glassware. Sample preparation-dissolution and decompositions. Gravimetric techniques. Selecting and handling or reagents. Laboratory notebooks Safety in the analytical laboratory. Errors and Evaluation Definition of terms in mean and inedian. Precision-standard deviation, relative standard deviation. Accuracy-absolute error, relative error Types of error in experimental data determinate (systematic), indeterminate (or random) and gross. Sources of error and the effects upon the analytical results. Methods for reporting analytical data. Statistical evaluation of data-indeterminate errors. The uses of statistics.
Unit-2	Food analysis Moisture, ash, crude protein, fat crude fiber, carbohydrates, calcium, potassium, sodium and phosphate. Food adulteration-common adulterants in food, contamination of foods stuffs. Microscopic examination of foods for adulterants. Pesticide analysis in food prodeuts. Extraction and purification of sample. HPLC. Gas chromatography for organophosphates. Thin-layer chromatography for identification of chlorinated pesticides in food products.
Unit-3	Analysis of Water Pollution Origin of Waste water, types, water pollutants and their effects. Sources of water pollution-domestic, industrial, agricultural soil and radioactive wastes as sources of pollution. Objectives of analysis-parameter for analysis-colour, turbidity, total solids, conductivity, acidity, alakalinity, hardness, chloride, sulphate, fluoride, silica, phosphates adm different forms of nitrogen, Heavy metal pollution-public health significance of cadmium, chromium, copper, lead, zinc, managanese, mercurry and arsenic. General survey of instrumental technique for the analysis of heavy metals in aqueous systems. Measurements of DO, BOD, and COD. Pesticides as water pollutants and analysis. Water pollution laws and standards.
Unit-4	Analysis of soil, Fuel, Body Fluids and Drugs (a) Analysis of Soil, moisture pH total nitrogen, phosphorus, silica, line, magnesia, manganese, sulphur and alkali salts. Fuel analysis: liquid and gas. Ultimate and proximate analysis-heating values-grading of coal. Liquid fuels-flash point, aniline point, octane number and carbon residue. Gascous fuels-produced gas and water gas-calorific value.

Sul Souli-

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम केंदीय अध्ययन मण्डल द्वारा अनुशंसित तथा म. प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

-	
Unit-5	(a) Clinical Chemistry: Composition of blood-collection and preservation of samples.
	Clinical analysis. Serum electrolytes, blood glucose, blood urea nitrogen, uric acid,
	albumin, globulins, barbiturates, acid and alkaline phosphates. Immunoassay: principles
	of radio immunoassay (RIA) and applications. The blood gas analysis trace elements n the
	body
	(b) Drug analysis: Narcotics and dangerous drug. Classification of drugs. Screening by
	gas and thin-layer chromatography and spectrophotometeric measurements.

Suggested Readings:

1 Analytical Chemistry, G.D. Christian, J. Wicy.

Sall policy

- 2. Fundamentals o analytical Chemistry, D.A. Skoog, D.M. West and F.J. Hooler, W.B. Saunders.
- 3. Analytical Chemistry-Principles. J.H. Kennedy. W.B. Saunders.
- 4. Analytical Chemistry-Principles and Techniques LG. Hargis Prentice Hall.
- 5 Principles of Instrumental analysis D.A. Skoog and J.L. Loary, W.B. Saunders.
- 6. Principles of Instrumental Analysis D.A. Skoog W.B. Saunders.
- 7 Quantitative Analysis, R.A. Day, Jr. and A.L. Underwood, Prentice Hall.
- 8. Environmental Solution, S.M. Khopkar, Wiley Eastern.
- 9. Basic Concepts of Analysis Chemistry, S.M. Khopkar, Wiley Eastern.
- 10. Handbook of Instrumental Techniques for Analytical Chemistry, F. Settle, Prentice Hall

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा विभाग, मंग्र, शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम

केंदीय अध्ययन मण्डल द्वारा अनुशंसित तथा म प्र. के राज्यपाल द्वारा अनुमोदित

Session (মর) 2010 - 2011

Class / কধা

M.Sc.

Semester / सेनेस्टर

IV

Subject / विषय

: Chemistry

Title of Subject Group

Electrochemistry

विषय समृह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

OPT-4 (Code- MCH-517)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य . Optional

. 50

Max. Marks अधिकतम अंक

Particulars / विवरण

Unit-1	1. Conversion and Storage of Electrochemical Energy Present status of energy
	consumption: Pollution problem. History of fuel cells, Direct energy conversion by
	electrochemical means. Maximum intrinsic efficiency of an electrochemical converter
	Physical interpretation of the Carnot efficiency factor in electrochemical energy
	converters. Power outputs.
	electrochemical Generators (Fuel Cells): Hydrogen oxygen cells, Hydrogen Air cell, Hydrocarbon air cell, Alkane fuel cell, Phosphoric and fuel cell, direct NaOH fuel cells, applications of fuel cells
	Electrochemical Energy Storage:
	Properties of Electrochemical energy storage: Measure of battery performance, Charging and discharging of a battery, Storage Density, Energy Density. Classical Batteries: (i Lead Acid (ii) Nickel-Cadmium, (iii) Zinc manganese dioxide. Modern Batteries: (i Zinc-Air (ii) Nickel-Metal Hydride. (iii) Lithium Battery, Future Electricity storers Storage in (i) Hydrogen, (ii) Alkali Metals, (iii) Non aqueous solutions.
Unit-2	Corrosion and Stability of Metals:
~	Civilization and Surface mechanism of the corrosion of the metals; Thermodynamics and
	the stability of metals, Potential -pH (or Pourbary) Diaphragmsl; uses and abuses
	Corrosion current and corrosion potential -Evans diagrams. Measurement of corrosion rat
	(i) Weight Loss method, (ii) Electrochemical Method
	Inhibiting Corrosion:
	Cathodic and Anodic Protection. (i) Inhibition by addition of substrates to the electrolytenvironment, (ii) by charging the corroding method from external source, anodic
	Protection, Organic inhibitors, The fuller Story Green inhibitors
	Passivation:
	Structure of Passivation films, Mechanism of Passivation, Spontaneous Passivatio
** ** *	Nature's method for stabilizing surfaces.
Unit-3	Bioelectrochemistry
	bioelectrodics, Membrane Potentials, Simplistic theory, Modern theory, Electrical
	conductance in biological organism. Electronic, Protonic electrochemical mechanism of
	nervous systems, enzymes as electrodes.
	Kinetic of Electrode Process:
	Essentials of Electrode reaction. Current Density, Overpotential, Tafel Equation, Butle
	Volmer equation. Standard rate constant (K0) and Transfer coefficient (a), Exchange Current.
	Irreversible Electrode processes: Criteria of irreversibility, informatino from irreversible wave.
Unit-4	
O111(-4	Methods of determining kinetic parameters for quasi-rversible and irreversible

Soul S. Onli-

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P.

उच्च शिक्षा विभाग, म.प्र. शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाठ्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशंसित तथा म प्र. के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

	waves : Koutecky's methods, Meits Israel Method, Gellings method			
	Electrocatalysis ;			
	Chemical catalysts and Electrochemical catalysts with special reference to purostates,			
	porphyrin oxides of rare earths. Electrocatalysis in simple redox reactions, in reaction			
involving adsorbed species. Influence of various parameters.				
Unit-5	Potential Sweep Method:			
	Linear sweep Voltammetry, Cyclic Voltammetry, theory and applications. Diagnostic			
	criteria of cycli voltammetry Controlled current microelectrode techniques : comparison			
	with controlled potentials methods, chronopotentiometry, theory ad applications.			
	Bulk Electrolysis Methods:			
	Controlled potential coulometry, Controlled Coulometry, Electroorganic synthesis and its			
	important applications. Stripping analysis : anodic and Cathodic modes, Pre electrolysis			
	and Stripping steps, applications of Stripping Analysis.			

Suggested Readings:

- 1. Modern Electrochemistry Vol. I, IIa. Vol. IIB J'OM Bockris and A.K N. Reddy, Plenum Publication, New York.
- 2. Polarographic Techniques by L. Meites, Interscience
- 3. "Fuel Cells . Thjeir electrochemistry". McGraw Hill Book Company, New York.
- 4. Modern Polarographic Methods by A.M. Bond, Marcell Dekker.
- 5. Polarography and allied techniques by K. Zutshi, New age International publicatin. New Delhi.
- 6. "Electroaalytical Chemistry by Basil H. Vessor & Galen W; Wiley Interscience.
- 7. Electroanalytical Chemistry by Basil H. Vessor & alen w; Wiley Interscience.
- 8. Topics in pure and Applied Chemistry, Ed. S. K. Rangrajan, SAEST Publication, Kararkudi (India)

Sur S. pli.

Post Graduate Semester wise Syllabus

as recommended by Central Board of Studies and approved by the Governor of M.P. उच्च शिक्षा यिभाग, म.प्र शासन

स्नातकोत्तर कक्षाओं के लिये सेमेस्टर अनुसार पाट्यकम

केंद्रीय अध्ययन मण्डल द्वारा अनुशासित तथा म प्र के राज्यपाल द्वारा अनुमोदित

Session (सत्र) 2010 - 2011

Class / কপ্রা

M.Sc.

Semester / सेमेस्टर

IV

Subject / विषय

Chemistry

Title of Subject Group

Medicinal Chemistry

विषय समृह का शीर्षक

Paper No. / प्रश्नपत्र कमांक

OPT-5 (Code- MCH-518)

Compulsory / अनिवार्य या Optional / वैकल्पिक अनिवार्य . Optional

Max. Marks अधिकतम अंक

50

Particulars / विवरण

	Tarticulars / 1995
Unit-1	Structure and activity: Relationship between chemical structure and biological activity (SAR). Receptor Site Theory. Approaches to drug design. Introduction to combinatorial synthesis in drug discovery. Factors affecting bioactivity. QSAR-Free-Wilson analysis, Hansch analysis, relationship between Free-Wilson analysis and Hansch analysis.
Unit-2	Pharmacodynamics: Introduction, elementary treatment of enzymes stimulation, enzyme inhibition, sulfonamides, membrane active drugs, drug metabolism, xenobiotics, biotransformation, significance of drug metabolism in medicinal chemistry.
Unit-3	Antibiotics and antibacterials Introduction, Antibiotic β-Lactam type - Penicillins, Cephalosporins, Antitubercular - Streptomycin, Broad spectrum antibiotics - Tetracyclines, Anticancer - Dactmomycin (Actinomycin D)
Unit-4	Antifungal – polyenes, Antibacterial – Ciprofloxaein, Norfloxaein, Antiviral – Aeyelovir Antimalarials : Chemotherapy of malaria. SAR. Chloroquine, Chloroguanide and Mefloquine
Unit-5	Non-steroidal Anti-inflammatory Drugs: Diclofenac Sodium, Ibuprofen and Netopam Antihistaminie and antiasthmatic agents: Terfenadine, Cinnarizine, Salbutamol and Beclomethasone dipropionate.

Books recommended

- 1 Introduction to medicinal chemistry, A. Gringuage, Wiley-VCB.
- 2 Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical Chemistry, Ed. Robert F Dorgo.
- 3. An Introduction to Drug Design, S.S. Pandeva and J.R. Dimmock, New Age International
- 4. Burger's Medicianl Chemistry and Drug Discovery, Vol-1 (Chapter 9 and Chapter 14), Ed. M E. Wolff, John Wiley
- 5. Goodman and Gilman's Pharmacoloical Basis of Therapeutics, Mc GRaw-Hill.
- 6 The Organic Chemistry of Drug Design and Drug Action, R.B. Silverman, Academic Press
- 7 Strategies for Organic Drug synthesis and Design, D.Lednicer, John Wiley.
- 8 Principles of Medicinal Chemistry W.O.Foye
- 9. Medicinal Chemistry, The Role of organic chemist in Drug Research, S.M. Roberts and B.J. Pricer

Sul 3/12.12 8 Only

SEMESTER IV

(Duration: 6-8 hrs in each branch)

Practical examination shall be conducted separately for each branch.

Inorganic Chemistry

Preparation	12
Instrumentation	12
Record	04
Viva Voice	05

Preparation

Preparation of selected inorganic compounds and their study by IR, electronic spectra, and magnetic susceptibility measurements. Handling of air and moisture sensitive compounds involving vacuum lines. Selection can be made from the following:

- 1. Sodium tetrathionate Na₂S₄O₆.
- 2. cis-[Co(trien) (NO₂)₂]Cl.H₂O
- 3. Metal complex of dimethyl sulfoxide: CuCl₂.2DMSO J.Chem. Educ., 1982, 59, 57.
- 4. Synthesis of metal acethylacetonate: Inorg. Synths, 1957, 5, 130, 1963, 1, 183.
- 5 tris(acetylacetonato)manganese(III), [Mn(acac)₃];
- 6. Bis(acetylacetonato) complexes of Cu(II), Co(II), and OV(IV)
- 7. Cis and Trans [Co(en)2Cl2]*.
- 8. Cu₂Hgl₄

Spectrophotometric Determinations

- a. Nickel by extractive spectrophotometric method.
- b. Copper-Ethylene diamine complex: Slope-ratio method.
- d. Determination of Keq of M L systems such as Fe (III) Salicylic acid or Fe(III) β resorcific acid by Job's &Mole ratio method.

Flame Photometric Determinations

- a. Sodium and potassium when present together.
- b. Lithium/calcium/barium/strontium.
- c. Cadmium and magnesium in tap water.

Potentiometric Titrations:

- 1 FAS Vs K₂Cr₂O₇
- 2. FAS Vs. KMnO
- 3. Determination of phosphoric acid in cola beverages by pH titration.

Conductometry.

- 1. Verification of Debye Huckle theory of ionic conductance for strong electrolytes KCI, BaCl₂, K₂SO₄, K₃[Fe(CN)₆]
- 2. Conductometric Titrations: (a) NaOH Vs. HCI (b) NaOH Vs. Boric acid
- Analysis of Electronic Spectra of transition metal complexes at least for one system [dn (Oh) or (Td)] and calculation of Crystal Field parameters, interelectronic repulsion parameter and bonding parameter.

SEMESTER IV

Organic Chemistry

Extraction of Organic Compounds from Natural Sources 12 Spectrophotometric Determinations or Estimations 12

Record 04 Viva Voice 05

Extraction of Organic Compounds from Natural Sources

- 1. Isolation of caffeine from tea leaves.
- 2. Isolation of casein from milk
- 3. Isolation of lactose from milk
- 4. Isolation of nicotine dipicrate from tobacco.
- 5. Isolation of piperine from black pepper.
- Isolation of lycopene from tomatoes.
- 7. Isolation of b-carotene from carrots.
- 8. Isolation of eugenol from clove.
- 9. Isolation of (+) limonine from citrus rind.

Spectroscopy

Identification of organic compounds by the analysis of their spectral data (UV, IR, PMR, CMR & MS) Spectrophotometric (UV/VIS) Estimations

1. Amino acids 2. Proteins 3. Carbohydrates

Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation method.

Estimation of amines/phenols using bromate bromide solution/or acetylation method.

SEMESTER IV

Physical Chemistry

Thermodynamics/Instrumentation	12
Chemical Kinetics	12
Record	04
Viva Voice	05

Thermodynamics

- 1. Determination of partial molar volume of solute (e.g. KCI) in a binary mixture.
- 2. Determination of partial molar volume of ethanol in a binary mixture.
- 3. Determination of the temperature dependence of the solubility of a compound in two solvents having similar intromolecular in tetractions (benzoic acid in water and in DMSO water mixture and calculate the partial molar heat of solution.

Chemical Kinetics

- 1. Determination of energy and enthalpy of activation in the reaction of KMnO4 and benzyl alcohol in acid medium.
- Determination of the velocity constant for the oxidation of iodide ions by hydrogen peroxide study the kinetics as an iodine clock reactions.
- 3. Kinetics of an enzyme catalyzed reaction.

Potentiometry

- 15. Estimation of halides (Cl', Br' and I) in a binary and ternary mixture potentiometrically.
- 16. To find out the composition of zinc ferrocyanide precipitate on adding zinc sulphate to acidified potassium ferrocyanide solution potentiometrically.

Books Suggested

- 1 Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R.C. Denney, G.H. Jeffery and J. Mendham, ELBS.
- 2. Synthesis and Characterization of Inorganic Compounds, W.L. Jolly. Prentice Hall.
- 3. Experiments and Techniques in Organic Chemistry, D.P. Pasto, C. Johnson and M. Miller, Prentice Hall.
- 4. Macroscale and Microscale Organic Experiments, K.L. Williamson, D.C. Health.
- 5. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 6. Handbook of Organic Analysis-qualitative and Quantitative. H. Clark, Adward Arnold.
- 7. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 8. Practical Physical Chemistry, A.M. James and F.E. Prichard, Longman.
- 9. Findley's Practical Physical chemistry, B.P. Levitt, Longman.

- 10. Experimental Physical Chemistry, R.C. Das and B. Behera, Tata McGraw Hill.
- 11. Inorganic Experimens, J. Derek Woolings, VCH.
- 12. Microscale Inorganic Chemistry, Z. Szafran, R.M, Pike and M.M. Singh, Wiley.
- 13. Practical Inorganic Chemistry, G. Marr and B. W. Rockett, Van Nostrad.
- 14. The systematic Identification of Organic Compounds, R.L. Shriner and D.Y. curlin.

Maria